Thèse soutenue

Techniques de fusion pour la reconnaissance de personne par l’iris dans des séquences dégradées

FR  |  
EN
Auteur / Autrice : Nadia Othman
Direction : Bernadette Dorizzi
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 11/03/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Equipe de recherche : TIPIC - Traitement de l'Information Pour Images et Communication
établissement de préparation de la thèse : Institut national des télécommunications (Evry ; 1979-2009)
Laboratoire : Département Electronique et Physique / EPH - Services répartis- Architectures- MOdélisation- Validation- Administration des Réseaux / SAMOVAR
Jury : Président / Présidente : Florence Tupin
Examinateurs / Examinatrices : Maria De Marsico, Emine Krichen
Rapporteurs / Rapporteuses : Amine Naït-Ali, Stephanie Schuckers

Résumé

FR  |  
EN

Parmi les diverses modalités biométriques qui permettent l'identification des personnes, l'iris est considéré comme très fiable, avec un taux d'erreur remarquablement faible. Toutefois, ce niveau élevé de performances est obtenu en contrôlant la qualité des images acquises et en imposant de fortes contraintes à la personne (être statique et à proximité de la caméra). Cependant, dans de nombreuses applications de sécurité comme les contrôles d'accès, ces contraintes ne sont plus adaptées. Les images résultantes souffrent alors de diverses dégradations (manque de résolution, artefacts...) qui affectent négativement les taux de reconnaissance. Pour contourner ce problème, il est possible d’exploiter la redondance de l’information découlant de la disponibilité de plusieurs images du même œil dans la séquence enregistrée. Cette thèse se concentre sur la façon de fusionner ces informations, afin d'améliorer les performances. Dans la littérature, diverses méthodes de fusion ont été proposées. Cependant, elles s’accordent sur le fait que la qualité des images utilisées dans la fusion est un facteur crucial pour sa réussite. Plusieurs facteurs de qualité doivent être pris en considération et différentes méthodes ont été proposées pour les quantifier. Ces mesures de qualité sont généralement combinées pour obtenir une valeur unique et globale. Cependant, il n'existe pas de méthode de combinaison universelle et des connaissances a priori doivent être utilisées, ce qui rend le problème non trivial. Pour faire face à ces limites, nous proposons une nouvelle manière de mesurer et d'intégrer des mesures de qualité dans un schéma de fusion d'images, basé sur une approche de super-résolution. Cette stratégie permet de remédier à deux problèmes courants en reconnaissance par l'iris: le manque de résolution et la présence d’artefacts dans les images d'iris. La première partie de la thèse consiste en l’élaboration d’une mesure de qualité pertinente pour quantifier la qualité d’image d’iris. Elle repose sur une mesure statistique locale de la texture de l’iris grâce à un modèle de mélange de Gaussienne. L'intérêt de notre mesure est 1) sa simplicité, 2) son calcul ne nécessite pas d'identifier a priori les types de dégradations, 3) son unicité, évitant ainsi l’estimation de plusieurs facteurs de qualité et un schéma de combinaison associé et 4) sa capacité à prendre en compte la qualité intrinsèque des images mais aussi, et surtout, les défauts liés à une mauvaise segmentation de la zone d’iris. Dans la deuxième partie de la thèse, nous proposons de nouvelles approches de fusion basées sur des mesures de qualité. Tout d’abord, notre métrique est utilisée comme une mesure de qualité globale de deux façons différentes: 1) comme outil de sélection pour détecter les meilleures images de la séquence et 2) comme facteur de pondération au niveau pixel dans le schéma de super-résolution pour donner plus d'importance aux images de bonnes qualités. Puis, profitant du caractère local de notre mesure de qualité, nous proposons un schéma de fusion original basé sur une pondération locale au niveau pixel, permettant ainsi de prendre en compte le fait que les dégradations peuvent varier d’une sous partie à une autre. Ainsi, les zones de bonne qualité contribueront davantage à la reconstruction de l'image fusionnée que les zones présentant des artéfacts. Par conséquent, l'image résultante sera de meilleure qualité et pourra donc permettre d'assurer de meilleures performances en reconnaissance. L'efficacité des approches proposées est démontrée sur plusieurs bases de données couramment utilisées: MBGC, Casia-Iris-Thousand et QFIRE à trois distances différentes. Nous étudions séparément l'amélioration apportée par la super-résolution, la qualité globale, puis locale dans le processus de fusion. Les résultats montrent une amélioration importante apportée par l'utilisation de la qualité globale, amélioration qui est encore augmentée en utilisant la qualité locale