Thèse soutenue

Modélisation planaire pour un RGB-D SLAM : localisation éparse et cartographie réduite

FR  |  
EN
Auteur / Autrice : Hakim El Chaoui El Ghor
Direction : Fakhr-Eddine AbabsaEl-Houssine Bouyakhf
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 06/12/2016
Etablissement(s) : Université Paris-Saclay (ComUE) en cotutelle avec Université Mohammed V (Rabat)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Informatique, Biologie Intégrative et Systèmes Complexes (Evry, Essonne)
établissement opérateur d'inscription : Université d'Évry-Val-d'Essonne (1991-....)
Jury : Président / Présidente : Mourad El Belkacemi
Rapporteur / Rapporteuse : Michel Devy, El Hassane Ibn El Haj

Résumé

FR  |  
EN

Cette thèse traite du problème de la Localisation et Cartographie Simultanées (SLAM) dans les environnements d’intérieur. Dans ce contexte, nous avons choisi un SLAM visuel en utilisant les données d’un capteur RGB-D de type Kinect pour estimer la trajectoire de la caméra et construire une carte 3D de l’environnement en temps réel. Malgré les avantages des caméras RGB-D (faible coût, images couleurs et cartes de profondeur), les données de profondeur issues de ce genre de capteur peuvent être de mauvaise qualité ce qui affecte l’estimation de la pose. En outre, la taille des nuages de points engendre une carte globale lourde et contenant de nombreux points 3D redondants. Afin de diminuer l’impact de ces faiblesses sur la résolution du SLAM, nous proposons d’utiliser des plans 3D, majoritaires dans les scènes d’intérieur, dans le processus d’estimation de poses de la caméra pour construire des cartes 3D basées-plans.Les plans 3D servent alors à générer des points d’intérêt 3D planaires moins bruités que les points bruts déduits directement des nuages de points. En rectifiant les valeurs de profondeur des points d’intérêt 3D bruts appartenant à ces plans, nous améliorons ainsi l’estimation de pose quand la scène est composée essentiellement de plans. Par la suite, les plans 3D détectés sont utilisés pour construire une carte 3D globale légère. La carte est élaborée en fusionnant itérativement les régions planaires détectées dans la scène avec celles déjà présentes dans la carte ou en ajoutant de nouveaux plans. Contrairement à la représentation classique basée point,nous réduisons ainsi la taille de la carte 3D et construisons des cartes compactes. Ces cartes sont exploitables par des applications de robotique mobile et de navigation. Pour montrer les bénéfices des travaux proposés dans cette thèse, les expérimentations réalisées évaluent la précision de la localisation, l’influence de l’échantillonnage des données RGB-D sur la détection des plans ainsi que la qualité de la carte basée-plans 3D par rapport à la scène réelle. La carte ainsi constituée de plans présente une première étape vers une carte plus sémantique.