Thèse soutenue

Effet multicaloric dans matériaux ferroïques

FR  |  
EN
Auteur / Autrice : Yang Liu
Direction : Brahim Dkhil
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 23/05/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Laboratoire de structures, propriétés et modélisation des solides (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Mimoun El Marssi
Examinateurs / Examinatrices : Brahim Dkhil, Xavier Moya, Zdravko Kutnjak, Jean-Michel Kiat
Rapporteurs / Rapporteuses : Xavier Moya, Zdravko Kutnjak

Résumé

FR  |  
EN

Les matériaux caloriques à l'état solide, qui subissent un changement de température adiabatique ou un changement d'entropie isothermal lorsque certains stimuli externes (champ électrique, champ magnétique, contrainte ou pression mécanique) est appliquée ou retirée, sont prometteurs pour la réfrigération à l'état solide, comme alternative aux dispositifs de refroidissement conventionnels inventé il y a cent ans qui utilisent des gaz dangereux. Compte tenu des améliorations des systèmes de réfrigération à compression de vapeur approchant très vite de leur limite d'efficacité théorique, en plus des préoccupations environnementales accrues, il y a eu récemment une recrudescence de la recherche mondiale pour de nouvelles solutions de réfrigération plus économiques et respectueuses de l'environnement. Les caloriques les plus importants sont les matériaux "ferroiquement" ordonnés (ferroélectriques, ferroélastiques et ferromagnétique / antiferromagnétique) qui présentent souvent des effets caloriques géants près de leurs transitions ferroïques. Dans cette thèse, nous présentons nos résultats théoriques et expérimentaux sur l'effet électrocalorique, élastocalorique, barocalorique et magnétocalorique dans différents matériaux ferroïques. Nos résultats montrent que tous ces effets caloriques peuvent donner des solutions de réfrigération prometteuses avec un faible impact environnemental. Nous abordons les ferroélectriques qui apparaissent comme matériaux idéaux permettant à la fois des réponses électrocaloriques, élastocaloriques et barocaloriques géantes près de la température ambiante. Pour la première fois, nous mettons en évidence un effet électrocalorique négatif dans des films minces antiferroélectriques et nous proposons un nouveau mécanisme pour comprendre la réponse calorique dans antiferroiques en général incluant antiferroélectrique et antiferromagentique. Par ailleurs, pour la première fois en utilisant une caméra infra-rouge, nous effectuons la mesure résolue spatialement sur l'effet électrocalorique dans des condensateurs multicouches, l'un des systèmes les plus étudiés considérés comme le prototype électrocalorique le plus prometteur. Nos résultats fournissent la première preuve expérimentale directe sur le flux de chaleur électrocalorique à la fois temporellement et spatialement dans un dispositif électrocalorique spécifique. En outre, pour la première fois, nous concevons un cycle de réfrigération multicalorique combinant effet électrocalorique avec des effets élastocaloriques / magnétocaloriques via des matériaux ferroélectriques. Nous avons réalisé ce cycle mutlicalorique pour résoudre un problème réel et de longue date, à savoir une grande hystérésis magnétique qui a empêché l'utilisation pourtant prometteuse de FeRh découvert il y a près de 26 ans en tant que matériau magnétocalorique. Nous espérons que cette thèse fournira non seulement des connaissances utiles pour comprendre fondamentalement l'effet calorique à l'état solide dans les matériaux ferroïques et ce qui est véritablement mesuré, mais pourra aussi servir de guide pratique pour exploiter et développer les ferrocalorics vers la conception de dispositifs appropriés.