Thèse soutenue

Evaluation et réduction des risques sismiques liés à la liquéfaction : modélisation numérique de leurs effets dans l’ISS

FR  |  
EN
Auteur / Autrice : Silvana Montoya Noguera
Direction : Arézou ModaressiFernando Lopez-Caballero
Type : Thèse de doctorat
Discipline(s) : Génie civil
Date : Soutenance le 29/01/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Laboratoire de mécanique des sols, structures et matériaux (Gif-sur-Yvette, Essonne ; 1998-2021)
Jury : Président / Présidente : Alain Pecker
Examinateurs / Examinatrices : Arézou Modaressi, Fernando Lopez-Caballero, Luis Fabián Bonilla, Gopal Madabhushi, Evelyne Foerster
Rapporteurs / Rapporteuses : Luis Fabián Bonilla, Gopal Madabhushi

Résumé

FR  |  
EN

La liquéfaction des sols qui est déclenchée par des mouvements sismiques forts peut modifier la réponse d’un site. Ceci occasionne des dégâts importants dans les structures comme a été mis en évidence lors des tremblements de terre récents tels que celui de Christchurch, Nouvelle-Zélande et du Tohoku, Japon. L’évaluation du risque sismique des structures nécessite une modélisation robuste du comportement non linéaire de sols et de la prise en compte de l’interaction sol-structure (ISS). En général, le risque sismique est décrit comme la convolution entre l’aléa et la vulnérabilité du système. Cette thèse se pose comme une contribution à l’étude, via une modélisation numérique, de l’apparition de la liquéfaction et à l’utilisation des méthodes pour réduire les dommages induits.A cet effet, la méthode des éléments finis(FEM) dans le domaine temporel est utilisée comme outil numérique. Le modèle principal est composé d’un bâtiment fondé sur un sable liquéfiable. Comme la première étape de l’analyse du risque sismique, la première partie de cette thèse est consacrée à la caractérisation du comportement du sol et à sa modélisation.Une attention particulière est donnée à la sensibilité du modèle à des paramètres numériques. En suite, le modèle est validé pour le cas d’une propagation des ondes 1D avec les mesures issus du benchmark international PRENOLIN sur un site japonais. D’après la comparaison, le modèle arrive à prédire les enregistrements dans un test en aveugle.La deuxième partie, concerne la prise en compte dans la modélisation numérique du couplage de la surpression interstitielle (Δpw)et de la déformation du sol. Les effets favorables ou défavorables de ce type de modélisation ont été évalués sur le mouvement en surface du sol lors de la propagation des ondes et aussi sur le tassement et la performance sismique de deux structures.Cette partie contient des éléments d’un article publié dans Acta Geotechnica (Montoya-Noguera and Lopez-Caballero, 2016). Il a été trouvé que l’applicabilité du modèle dépend à la fois du niveau de liquéfaction et des effets d’ISS.Dans la dernière partie, une méthode est proposée pour modéliser la variabilité spatiale ajoutée au dépôt de sol dû à l’utilisation des techniques pour diminuer le degré de liquéfaction. Cette variabilité ajoutée peut différer considérablement de la variabilité inhérente ou naturelle. Dans cette thèse, elle sera modélisée par un champ aléatoire binaire.Pour évaluer l’efficience du mélange, la performance du système a été étudiée pour différents niveaux d’efficacité, c’est-à-dire,différentes fractions spatiales en allant de non traitées jusqu’à entièrement traitées. Tout d’abord le modèle binaire a été testé sur un cas simple, tel que la capacité portante d’une fondation superficielle sur un sol cohérent.Après, il a été utilisé dans le modèle de la structure sur le sol liquéfiable. Ce dernier cas,en partie, a été publié dans la revue GeoRisk (Montoya-Noguera and Lopez-Caballero,2015). En raison de l’interaction entre les deux types de sols du mélange, une importante variabilité est mise en évidence dans la réponse de la structure. En outre, des théories classiques et avancées d’homogénéisation ont été utilisées pour prédire la relation entre l’efficience moyenne et l’efficacité. En raison du comportement non linéaire du sol, les théories traditionnelles ne parviennent pas à prédire la réponse alors que certaines théories avancées qui comprennent la théorie de la percolation peuvent fournir une bonne estimation. En ce qui concerne l’effet de la variabilité spatiale ajoutée sur la diminution du tassement de la structure, différents séismes ont été testés et la réponse globale semble dépendre de leur rapport de PHV et PHA.