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ABSTRACT  

 With constant demand for larger band and more compact RF devices, the rapid shift 
to higher frequency regions, as high as the W-band (75 to 110 GHz), forces microwave 
designers to both transfer existing technologies to and invent new ones for these bands. The 
major obstacles encountered in this endeavour are the problem of efficient field 
confinement, problematic electrical contacts, high dielectric losses, and difficult integration 
between devices realized with different technologies, to name a few. To overcome these 
issues, several competing technologies emerged in the past two decades. One of the most 
promising is the substrate-integrated waveguide (SIW) paradigm. Its key concept is, as its 
name clearly indicates, the possibility of integrating waveguides into substrates, most often 
done by embedding densely-packed metal and dielectric cylinders into substrates bounded 
by highly-conductive layers, e.g. PCB-type ones. Doing so mitigates most of the 
aforementioned issues since. In addition, it provides unprecedented freedom in the range 
of devices that can be realized. Though commonly planar, these devices may have guide 
narrow walls of almost arbitrary shape and can be easily integrated with ones realized in 
alternative technologies, such as the coplanar-waveguide or microstrip technology. The 
richness in design possibilities, robustness and solid performance has led to a very large 
number of SIW devices, some of them finding place in commercial applications. However, 
aside from the simplest ones, they comprise a large number of elements and often have 
complex layouts. Hence, they present a challenge from a designer’s perspective, 
necessitating numerical analysis and optimization. The most common solvers used for that 
purpose are based on FEM, FDTD/FDFD, and MoM, or merge several methods. Though they 
are up to the task for a vast range of structures, faster and more accurate ones are highly 
sought for.  

 This thesis is concerned with a hybrid mode-matching/MoM method suited to the 
analysis of a vast range of planar SIW structures. It relies on an efficient modal 
representation of fields in parallel-plate waveguides, loaded with either single or multi-layer 
planar dielectrics, containing circular-cylindrical posts; it enables the construction of linear 
systems whose solutions yield post-scattered field amplitudes. This problem is what we 
refer to as mode-matching, and provides means of fast computation of field in presence of 
metal and dielectric posts, as they are the most common elements in an SIW device. Now, 
since a significant share of such devices use narrow rectangular slots as coupling and 
radiating elements, we propose an MoM-based approach to their analysis. Through the 
application of the equivalence principle, each slot is short-circuited and replaced by 
equivalent magnetic currents; the procedure effectively partitions the larger problem into 
several smaller ones, each pertaining to a single region bounded by parallel PEC plates (a 
single parallel-plate waveguide). Enforcing the boundary conditions at surfaces of slots and 
performing Petrov-Galerkin weighting, we obtain a linear system whose solutions are the 
amplitudes of magnetic currents. From there we proceed to the computation of relevant 
quantities such as S, Y and Z parameters. We provide empirical criteria for choosing the 
number of modes/basis functions sufficient for high accuracy. Moreover, we present 
approximation techniques and show how to exploit symmetries inherent in SIW devices to 
speed up the method even further. 

 To stress the features rendering our approach advantageous over the alternatives, 
we compare it to ones found in literature representing what we believe to be the most 
successful attempts. We present the results of analysis of several SIW structures of varying 
complexity, obtained by our in-house code based on the method exposed here, and compare 
them against the ones obtained with a standard commercial solver. The obtained results 
show excellent accuracy and efficiency of the proposed method, confirming its advantage 
over commercial software. The speed-up factor, the robustness and generality make it an 
attractive tool to be used in design and optimization of SIW devices.  
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RESUMÉ DE THÉSE 

Introduction et objectifs 

Des défis majeurs se posent aujourd’hui à toute tentative de conception des 
dispositifs électroniques aux hyper-fréquences au-delà d’environ 20 GHz. Notamment : a) 
confinement difficile des champs électromagnétiques, b) pertes diélectriques et métalliques 
importantes, c) intégration entre technologies différentes, et d) difficulté de fabrication des 
dispositifs en système monolithique. La technologie en substrat intégré offre des nombreux 
avantages pour le développement de dispositifs guidant (substrate-integrated waveguide, 
SIW) aux hyper-fréquences [1]. Cette technologie combine simplicité et flexibilité pour 
surmonter les limites des technologies plus consolidées, telles que le microruban, ainsi que 
les nouvelles et moins conventionnelles, telles que le « bed of nails ». 

La prémisse à la base de cette technologie est à la fois simple et puissante. Les conducteurs 
métalliques verticaux qui confinent les champs dans un guide d’onde sont remplacés par 
une série de trous verticaux métallisés faits dans le substrat. Ces trous, très proches entre 
eux, forment une barrière qui empêche la fuite de l'énergie dans l'espace autour (figure R.1). 

Figure R.1 a) Guide d’onde brevetée par Shigeki (prise de [2]), b) Première antenne 
mis en œuvre dans la technologie SIW par Hirokawa et Ando (1998) (prise de [3]) 

 

a) b)  

 

Cette stratégie permet de réaliser des structures plus complexes, en raison de la flexibilité 
dans le placement des trous et à la facilité de fabrication. En effet, un grand nombre de 
dispositifs micro-ondes a été réalisé dans la technologie SIW dans les 20 dernières années, 
allant des filtres [4], coupleurs directionnels [5], circulateurs [6], jonctions T-magiques, 
plans diplexeurs, etc. . De surcroit, un certain nombre de dispositifs actifs ont été également 
mis en œuvre, comme des oscillateurs à rétroaction [7], diode Gunn, amplificateurs et 
mixeurs électriques mono-transistor. Par conséquent, tous les ingrédients nécessaires pour 
réaliser des dispositifs en SIW sont disponibles. En fait, l'une des tendances de la recherche 
actuelle dans ce domaine est orientée vers la réalisation de systèmes autonomes sur un seul 
substrat [8], car les structures SIW peuvent avoir des pertes et un couplage inter-circuit 
beaucoup plus faibles que les technologies alternatives. 

En dépit de tous leurs avantages, les appareils SIW sont composés d’un très grand nombre 
d'éléments, ce qui complique, par conséquent, leur conception. Ceci est principalement dû 
aux interactions, souvent difficiles à prédire, en particulier dans des structures 
électriquement grandes. Bien qu'un certain nombre de règles de conception, rapides et 
approchées, aient été inventées (voir par exemple [9]), elles peuvent servir uniquement 
dans la première étape de conception. Malheureusement, la complexité et la généralité des 
structures à analyser empêchent la dérivation des formules analytiques suffisamment 
précises. Ce problème a poussé des efforts importants dans le développement d'un grand 
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nombre de méthodes d'analyse rapide. Ces méthodes peuvent être grossièrement divisées 
en deux typologies. Les méthodes analytiques approchées-, reposant sur des 
approximations à partir de formulations intégrales ou différentielles ([10], [11], [12]) et les 
méthodes rigoureuses (full wave). Les approximations sont souvent faite grâce à quelques 
symétries spécifiques (telles que périodicité ou symétrie miroir) ou en négligeant des effets 
d'ordre supérieur, ou avec sur des paramètres obtenus empiriquement à travers une 
procédure d'interpolation. 

Les méthodes full wave, d'autre part, représentent les effets complexes de la diffusion sans 
approximations, sur la base soit des différences finies / éléments finis ou de la méthode des 
moments (MoM, [13], [14], [15]). Des méthodes hybrides peuvent aussi fusionner plusieurs 
approches décrites dessus. [16]. Bien que certains des ouvrages cités représentent des 
méthodes puissantes et flexibles, leur dénominateur commun est le manque général de 
généralité et d'efficacité. Ils reposent sur des scénarios trop spécifiques et donc restrictifs, 
et les résultats ne peuvent pas toujours être satisfaits dans un dispositif pratique. 

En manque de méthodes full wave rapides et précises adaptées à l'analyse d'une vaste classe 
de dispositifs SIW, les objectifs du travail développé dans le cadre de cette thèse sont 
formulés ci-dessous: 

 concevoir et mettre en œuvre une méthode numérique d'analyse pour 
modéliser une grande variété de dispositifs SIW avec une grande précision et de 
relativement faibles ressources de calcul (par rapport aux solveurs 
commerciaux standard), y compris des scénarios impliquant des milieux 
diélectriques planaire en couches dans PPWs. 

 explorer les caractéristiques générales des dispositifs SIW utilisant l'analyse mis 
au point en fonction des propriétés modales des champs. 

Le premier objectif est motivé par l'absence d'outils fiables au moment de la conception de 
cette thèse. Bien que certaines méthodes aient été mises au point, ils ne pouvaient pas gérer 
une grande variété de géométries. Cette limitation est due soit au caractère approché de la 
méthode d'analyse, ou à l'inefficacité de calcul liée au nombre très large des inconnues à 
déterminer. 

Le deuxième objectif est mûri pendant le travail de thèse en raison du cadre mathématique 
adopté pour la formulation du problème. Notamment, une méthode particulière de 
synthèse de champ modal, décrite dans les prochaines sections, s’est avérée la meilleures 
pour obtenir une plus rapide convergence des algorithmes utilisés. Cette décomposition 
modale permet l’expression du champ total en plusieurs ondes de nature différente : ondes 
rayonnantes, ondes guidées par la PPW, ondes diffractées par les trous etc. Ce résultat 
permet d'identifier les processus physiques qui contribuent le plus au champ total et, par 
conséquent, élaborer des lignes directrices sur des règles simplifiées pour la conception des 
dispositifs. En outre, elle a conduit à l'amélioration de l'efficacité de l'algorithme sur la base 
d’approximations qui évitent le calcul de certaines interactions entre composants.  

 

Analyse des dispositifs SIW 

Un certain nombre de méthodes pour l'analyse efficace des structures de SIW 
planaires ont été conçues et appliquées au fil des ans. Dans cette thèse, une méthode 
hybride est présentée, fusionnant la méthode des moments et la méthode de raccordement 
modal, capable de gérer la résolution de SIW planaires assez généraux. Ceux-ci incluent la 
présence de plusieurs guides d'ondes SIW planaires empilés et couplés par des fentes, de 
guides composés d'un nombre arbitraire de couches diélectriques planes, de structures 
fermées ainsi que des dispositifs rayonnants. 
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En comparaison à d'autres méthodes similaires, notre méthode porte l'avantage clé 
de formuler un problème scalaire au lieu d’un problème vectoriel. Afin de trouver la fonction 
de Green dyadique de la SIW, les méthodes mentionnées reposent sur ce qu'on appelle la 
procédure Ohm-Rayleigh. Essentiellement, on trouve d'abord des ensembles complets de 
fonctions vectorielles satisfaisant les équations de Maxwell-Heaviside (vecteurs propres de 
la structure analysée). Ceux-ci sont obtenus par la différenciation des fonctions scalaires 
(correspondant à des modes caractéristiques du problème de la valeur limite en 
question). Ensuite, on procède à l'expansion de la fonction de Green dyadique en termes des 
vecteurs propres, obtenant une représentation spectrale complète; une transformée de 
Fourier inverse est enfin effectuée, ce qui donne la représentation spatiale 
souhaitée. Cependant, il faut être extrêmement prudent dans l'exercice de la transformée 
inverse, car des singularités spectrales doivent être prises en compte dans l'évaluation de 
la self-admittance (ou self-impédance) du dispositif. En outre, la procédure est assez 
fastidieuse en raison de plusieurs développements en séries de fonctions et intégrations 
spectrales, en liaison avec des régularisations pas très intuitives qui doivent être appliquées 
pour rendre les intégrales convergentes. Une autre difficulté, plus conceptuelle que 
technique, est un certain manque d’intuitivité (cette méthode ne se prête pas une 
interprétation physique simple) par rapport à la méthode de Schwinger-Marcuvitz-Felsen 
que nous avons appliquée. 

D'autre part, nous démontrons comment construire la fonction de Green dyadique 
nécessaire  à partir de potentiels scalaires, que nous dérivons avec ce que nous croyons être 
une manière élégante - conceptuellement claire, physiquement interprétable et 
mathématiquement cohérente. Nous montrons comment le dyadique de Green pour PPWs 
avec milieux diélectriques homogènes par morceaux est construit et régularisé, la 
régularisation étant d'une importance capitale dans l'application ultérieure de la méthode 
Petrov-Galerkin. 

Une méthode numérique est finalement jugée par son efficacité - sa capabilité 
d’obtenir des résultats suffisamment précis dans un temps de calcul acceptable. Dans notre 
cas, le concept clé permettant la formulation d'une méthode efficace est l'utilisation d’une 
représentation du champ à l’aide de lignes de transmission radiales : les fonctions 
représentants le champ sont exprimées comme produits de fonctions radiales de Bessel ou 
Hankel et d’harmoniques azimutaux (exponentielles imaginaires). Comme la plupart des 
structures laissent propager un seul mode guidé (habituellement celui d’ordre inferieur, le 
mode fondamental), les modes d'ordre supérieur seront atténués. Par conséquent, leur 
fonctions de Hankel, qui décrivent la dépendance radiale des champs, seront 
exponentiellement amorties. Il en résulte que seul un nombre réduit de modes sera 
nécessaire pour représenter avec précision le champ total. Des arguments similaires sont 
applicables aux modes azimutaux décrivant la variation angulaire des courants et des 
champs. S’il est bien conçu, un dispositif SIW contiendra des trous dont la circonférence sera 
faible par rapport à la longueur d’onde des champs se propageant dans le guide. Par 
conséquent, un petit nombre de fonctions azimutales sera en mesure de reconstituer la 
variation angulaire de champs et de courants autour de chaque trou. 

En conclusion, cette représentation nous permet de représenter efficacement les champs 
électromagnétiques incidents (en fonction de sources), et les champs diffractés par trous et 
fentes. Les systèmes linéaires liés à cette représentation, dont les solutions donnent les 
amplitudes des champs diffractés par des trous métallisés ou diélectriques, résultent donc 
de taille réduite, et seront également considérés dans les travaux. 

De plus, nous montrons comment évaluer numériquement les champs à l’intérieur 
de dispositifs empilés constitués par un certain nombre de guides SIW reliés entre eux par 
des fentes rectangulaires. Le couplage des fentes est étudié avec une méthode des moments, 
formulée pour des structures fermées et ouvertes. Nous montrons comment construire des 
systèmes linéaires à l’aide d’une méthode de moments en réutilisant des quantités déjà 
calculées pendant l’analyse du raccordement modale, et, par conséquent, réduisant le temps 
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d'exécution. Plusieurs méthodes ad-hoc sont présentées pour réduire le nombre 
d'inconnues et des calculs, qui aboutissent à une accélération significative des temps de 
calcul de l'ordre de N, où N est le nombre de cellules élémentaires d'un dispositif modulaire 
(par exemple, constitué d'un certain nombre de guides identiques). Une procédure 
automatisée qui pourrait être capable de reconnaître de manière autonome les motifs de 
répétition et les symétries d'un dispositif général sera un prochain développement des 
futures recherches dans ce sujet. 

Les résultats des simulations numériques qui illustrent l'efficacité de la méthode 
seront présentés dans le chapitre 3 de cette thèse. En synthétisant, de nombreux calculs 
menés en comparaison avec un logiciel commercial électromagnétique (Ansys HFSS) 
montrent l’avantage significatif de notre méthode sur le logiciel commercial. La précision, 
ci-définie comme l'accord entre les quantités calculées à la fois avec le solveur commercial 
et le code MATLAB basé sur notre méthode, est excellente dans toutes les structures 
considérées. Des différences mineures existent, visibles dans les diagrammes de 
rayonnement au-dessous d’un niveau de -20 dB, et peuvent être considérées comme 
négligeables. En ce qui concerne les paramètres S, l'accord est également excellent, même 
pour les dispositifs SIW multicouches. Bien que les « waveguide ports » en régime 
monomodal soient utilisés dans la présente analyse, une extension de la méthode, couvrant 
le cas de plusieurs modes qui se propagent dans chaque porte est déjà en cours de 
validation. En ce qui concerne le temps de calcul, notre méthode est nettement plus rapide 
que le solveur commercial, étant de 4 à environ 20 fois plus rapide (selon la structure 
considérée). En outre, l'utilisation de la mémoire de notre code est très inférieure en raison 
d'un nombre d'inconnues significativement plus faible et des méthodes d'accélération 
appliquées. Le grand nombre d’inconnues est, de fait, ce qui limite l'applicabilité du logiciel 
commercial à l'analyse des grandes structures : à un certain point, le nombre d'inconnues 
devient tellement large que même les ordinateurs haut de gamme ne sont plus en mesure 
de stocker toutes les données nécessaires pour la solution du problème. Dans tous ces cas, 
notre approche peut être appliquée de manière fiable. 

Un résumé des résultats les plus importants de la thèse est donné ci-dessous: 

I.    L'extension du formalisme Schwinger-Marcuvitz-Felsen à PPWs remplies 
avec des milieux diélectriques multicouche. 

II.    Extraction cohérente des singularités de la fonction dyadique de Green. 

III.    L'application du formalisme ci-décrit pour étudier SIW planaires empilées 
et couplées à travers des fentes rectangulaires. 

IV.    Expressions généralisées pour l’admittance des fentes dans les dispositifs  
de SIW remplies avec des milieux diélectriques multicouche. 

V.    Réduction significative du temps de calcul et de la mémoire nécessaire par 
rapport aux logiciels commerciaux, à parité de précision. 

Bien que la méthode présentée dans cette thèse puisse être appliquée à une grande 
variété de dispositifs SIW, certaines caractéristiques pourraient ajouter un ajustement 
complet de l'outil d'analyse pour gérer des scénarios pratiques. La première de ces 
caractéristiques est le traitement des pertes métalliques et diélectriques. En effet, la plupart 
des structures sont conçues pour minimiser lesdites pertes, qui dans certains cas peuvent 
être négligées ; il est pourtant souvent important de pouvoir évaluer les pertes, surtout si 
les fréquences opérationnelles tombent dans les domaines des ondes millimétriques ou des 
TeraHertz. L’évaluation des pertes nécessiterait une représentation de champ différent, en 
fonction de la conductivité des surfaces métalliques. Notamment, la présence de surfaces 
métalliques avec pertes, à condition que la conductivité soit suffisamment élevée, peut être 
prise en compte par les conditions aux limites de Leontovich [17], et ainsi représentées 
comme des surfaces d’impédances. En général, cela conduira à des ensembles de modes TM 
et TE mutuellement non orthogonaux, c’est-à-dire, les surfaces à pertes provoquent un 
couplage entre les modes de la structure. Cette approche a été appliquée, par exemple, dans 
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[18], [19] et [20], mais aucune tentative de généraliser le cas d'un PPW multicouche n’a été 
fait. Si, d'autre part, la conductivité considérée est faible, les objets métalliques deviennent 
pénétrables et peuvent être modélisés, par exemple, comme diélectriques avec pertes. Cela 
conduit alors à un problème plus difficile, étant donné que le spectre de l’opérateur vertical 
devient continu (bien que le spectre discret sera présents également). 

Comme décrit dans la section 2.2.1, la méthode ci-présentée suppose des plaques 
métalliques de largeur infinie. Dans les cas les plus pratiques, même pour des réseaux de 
fentes, la troncature ne produit pas d'effets de bord significatifs comme du rayonnement 
dans des directions non désirées. Néanmoins, il pourrait être utile d'inclure des corrections 
dues à la diffraction aux bords des structures dans les prochains développements. Cela 
pourra être fait en utilisant une formulation appropriée de la théorie de la diffraction (voir 
par exemple [21]). 

Conclusion et perspectives 

Une méthode numérique doit être jugée par la précision de ses prédictions. Bien 
qu’elle puisse être simple ou élégante, elle peut aussi échouer à fournir des résultats qui 
correspondent à la réalité. À partir de séries de tests, nous avons rassemblé les 
caractéristiques principales de la performance de la méthode, et en avons déduits les points 
forts et les faiblesses de celle-ci. 

 

Les discussions précédentes peuvent être résumées à l’ensemble des déclarations 
suivantes : 

I. La méthode présentée dans ce travail constitue un cadre conceptuel simple 
pour résoudre les problèmes de diffusion dans des systèmes SIW pouvant 
contenir : 
a. Panneau diélectrique simple ou multi-couches, 
b. Cylindres métallique et diélectriques de rayon arbitraire, 
c. Fentes de couplage et fentes rayonnantes 

En tant que telle, elle permet de traiter une grande variété de problèmes rencontrés 
dans la conception des dispositifs SIW. La simplicité conceptuelle et la cohérence 
mathématique, ainsi que son champ de représentation avantageux permettent de 
développer rapidement des routines numériques applicables à la fois à la conception et à 
l'analyse. En outre, cette même représentation sur le terrain se prête à l'application des 
techniques d'approximation asymptotique, ce qui pourrait accélérer l'analyse par un ordre 
de grandeur (voir par exemple [22]). 

II.    A en juger par les tests numériques effectués, la méthode est applicable à la fois 

a. dispositifs fermés (résonance) de forme arbitraire (bien sûr, à 
condition que le guide d'ondes en question est plan), et 

b. dispositifs rayonnants dont les éléments rayonnants sont des fentes 
rectangulaires (bien que la méthode puisse être généralisée à des éléments 
de forme arbitraire). 

III.    Du point de vue de l'utilisation des ressources de calcul HFSS, notre code surpasse 
le solveur FEM d’HFSS dans tous les scénarios simulés, avec un facteur de réduction 
du temps de calcul allant de 3 à 24, et un facteur de réduction de la mémoire vive 
utilisée allant de 1.1 jusqu’à 29, en fonction du nombre d’éléments de 
DUT (dispositifs en cours de test) et des fonctions de base utilisée. Les chiffres les 
plus bas apparaissent lorsque le nombre d'éléments et le nombre de fonctions de 
base sont élevés, ce qui donne lieu à de grands systèmes linéaires qui doivent être 
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résolus de manière itérative. Cependant, dans la plupart des cas, il est suffisant de 
considérer pas plus de deux modes longitudinaux, sept modes azimutaux (i.e. les 
modes avec le nombre d'onde azimutal dans l’intervalle [-3, 3]) et cinq fonctions de 
base de la fente; de nombreux problèmes en requièrent même moins pour une 
précision excellente. 

IV.    En raison de sa généralité, l'approche proposée est applicable à un large éventail 
de profils diélectriques (i.e. configurations d'épaisseurs de couche et 
permittivités); la seule stipulation étant que le cadre multi-couches ne peut être 
utilisé pour les appareils rayonnants chargés de plaques diélectriques dont les 
couches respectives ont des valeurs de permittivité similaires ( «similaire» 

signifiant // 5 %i j i j      pour toutes couches i, j). En outre, le nombre 

d'inconnues augmente significativement moins avec l'augmentation de la 
permittivité et/ou de l'épaisseur d'une couche diélectrique par rapport à HFSS. Ceci 
est dû à l'utilisation de forme fermée des fonctions propres à la stratification de 
coordonnées, par opposition aux maillages tétraédriques à base HFSS. 

D'autre part, la méthode possède quelques limitations qui pourraient faire l'objet de travaux 
futurs: 

I.     Pour l'instant, l'analyse de systèmes diélectriques ou de composants métalliques 
à pertes n’est pas pris en charge. L'inclusion de ces pertes serait une caractéristique 
importante, en particulier à des fréquences supérieures à 20 GHz. 

II.    L'applicabilité de la méthode pour de très grands/complexes dispositifs nécessite 
une analyse plus approfondie. Bien qu'il ait été démontré qu'elle fonctionne bien 
pour les appareils comportant plusieurs centaines d'éléments (jusqu'à environ 
700), il est nécessaire d'étudier la stabilité et la convergence lorsque le nombre 
d'éléments est de l'ordre de plusieurs milliers. Il est tout à fait possible que les 
routines de résolution alternatives pour les systèmes linéaires pertinents devront 
être adoptées. 

III.    Les fentes de forme arbitraire doivent être prises en charge, comme une partie 
importante des dispositifs pratiques reposent des formes non-canoniques, comme  
des os de chien et des fentes croisées. A cet effet, on pourrait utiliser une base 
générale telles que les fonctions de Rao-Wilton-Glisson. L’inconvénient dans ce cas, 
bien sûr, serait l'augmentation du temps de calcul due à la fois à la triangulation et 
le calcul d'un plus grand nombre de termes d’admittance par rapport à l'approche 
de base. 

IV.      Le code MATLAB développé, basé sur la méthode proposée, doit être optimisé 
pour une exécution plus rapide et une plus petite empreinte mémoire, pour 
permettre la manipulation de structures plus grandes sur une gamme moyenne de 
configurations. À l'heure actuelle, le code est une implémentation simple de 
l'algorithme proposé, sans techniques de gestion de la mémoire ou d'optimisation 
de code. Par conséquent, il doit être réécrit dans un langage plus rapide, de 
préférence compilé, tel que le C ++ ou le FORTRAN. Une accélération possible 
pourrait être réalisée par déroulage de boucles [23] en raison de la présence d'un 
grand nombre de boucles for et while. Une accélération significative peut être 
réalisée par une parallélisation en utilisant un GPU (par exemple par le portage du 
code CUDA C ++), une technique prenant de l'ampleur dans la communauté de 
l'électromagnétisme numérique en raison de la large disponibilité de processeurs 
graphiques puissants. Quant à la question de l’empreinte mémoire, principalement 
due au stockage de grandes matrices générées par les sous-routines mode-
matching/MoM, on pourrait simplement stocker lesdites matrices à sur fichiers 
formatés, les effacer de la mémoire vive (RAM) et les charger de nouveau si 
nécessaire. Bien sûr, la lecture du disque dur est beaucoup plus lente que la RAM, 
mais l'avantage potentiel est la possibilité d'analyser des structures plus grandes 
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sur les postes avec une RAM limitée. En outre, en raison de la présence de matrices 
creuses, le format de stockage standard des matrices creuses peut être utilisé. 
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Introduction   1 

1 INTRODUCTION 

 Time and time again, over a wide range of disciplines, it has been proven that 
ingenuity has its roots in simplicity. Microwave engineering holds no exemption to this fact. 
The constant demand for higher performance in terms of efficiency, bandwidth and 
mechanical resilience dictates the use of ever-increasingly complex designs. On the other 
hand, ease of fabrication with its implicit benefit of low-cost mass production place 
significant constraints on the overall complexity. However, as it has been demonstrated 
over and over, if one is in possession of simple enough building blocks of a system, both the 
complexity and ease of fabrication issues can be mitigated at once. A direct example of this 
is the microstrip technology [24]. By using thin strips of conducting material placed on a 
conductor backed dielectric slab, one can realize transmission lines, intermediate elements 
such as phase shifters, cross-overs etc., as well as radiating elements based on radiating 
patches, enabling one to realize complete transceiver systems in a single technology. 
Moreover, such systems can be fabricated by conventional means such as the printed-
circuit-board technique (PCB), allowing high-precision mass production.  

 With the shift of microwave technology application to higher frequencies, even as 
high as the D-band, there is need of a simple, flexible and reliable framework for realizing 
efficient devices fulfilling diverse tasks. Unfortunately, in this region, conventional 
technologies suffer from debilitating drawbacks, such as high dielectric losses and difficult 
fabrication, rendering them inefficient and/or costly. The substrate integrated waveguide 
(SIW) paradigm is a promising candidate capable of overcoming the aforementioned 
difficulties, which has been gaining momentum over the past two decades, primarily due to 
its simplicity and flexibility. In this chapter, we discuss its foundations, merits and potential, 
as well as review the common design and analysis methods applied to it.  In Section 1.1 we 
present a brief overview of the existing planar microwave technologies and basic system 
requirements encountered in practice nowadays. In Section 1.2 we discuss and review the 
SIW technology in relation to the aforementioned requirements, comparing it to 
conventional technologies. Section 1.3 deals with the most common methods of analysis 
applied to SIW devices, and serves as both a state-of-the-art and motivation for the work 
exposed in this thesis. Section 1.4 is concerned with the aims of this thesis relating to the 
analysis and design of novel SIW devices.  We conclude this chapter with Section 1.5, in 
which we outline the structure of this thesis. 
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2 Introduction 

1.1 Planar microwave systems - basics 

 An overwhelming majority of all microwave systems used today belong to the class 
of planar systems. This comes as no surprise as they are simpler to implement and fabricate, 
owing to their relatively simpler geometry. Moreover, common planar fabrication processes 
such as the printed circuit board (PCB) or low-temperature co-fired ceramics (LTCC) 
technique allow precise and quick fabrication, making planar microwave systems even 
more attractive.  

 A typical microwave system is composed of a number of modules, depending on the 
purpose, but can generally be divided into a transmitting and a receiving network, though 
in practice they often overlap. The transmitting part consists of integrated circuits and 
devices which generate, process and amplify signals to be transmitted, which are then 
passed to the antenna feeding network. The feeding network consists of a number of passive 
and active devices, such as filters, amplifiers, cross-overs etc., whose purpose is to further 
process the signal and distribute it properly to the end module – the antenna system. The 
antenna system consists of a single antenna or, more commonly, of an array of radiating 
elements, serving to transmit the signal to a receiver. One notes that it is advantageous to 
have the ability to implement all the necessary parts using the same or similar technologies 
and, in the end, to integrate them easily on a single housing. This, indeed, is the most 
common case in practice, where all the modules are mounted and interconnected on a 
common wafer/substrate.  

 The most common microwave technologies are the stripline/microstrip and planar 
waveguide technology. Microstrip technology relies on the use of planar strips printed on 
dielectric substrates backed by conducting sheets, which serve as quasi-TEM transmission 
lines. In Figure 1.1, a schematic of a general microstrip transmission line is shown, along 
with the electric field lines of the dominant propagating mode. 

Figure 1.1 Microstrip line cross-sectional view, taken from [25] 

   

The idea is the following – an exciting electromagnetic wave can couple to the structure by 
inducing oppositely flowing currents on the strip and the backing conductor, respectively. 
The propagating wave will be present both in the dielectric and air, as can be seen from the 
field lines, which implies that no TEM mode can exist. Thus, the energy is carried by hybrid 
waves. However, in practice, the strip is made narrow (smaller than the guiding 
wavelength), and the substrate thickness and permittivity are chosen so as to a) allow 
propagation of a single mode, and b) make the wave number transverse to the propagation 
direction as small as possible (at least an order of magnitude less than in the propagation 
direction). Thereby, a dominant quasi-TEM mode usually carries the major portion of the 
energy. However, if the substrate thickness becomes large enough, or a high permittivity 
substrate is used, surface waves can be induced which may be detrimental to the 
functioning of the device, e.g. cause cross-talk between lines or increase the sidelobe level 
of patch arrays.  Because of its low profile and diversity in terms of the number of elements 
that can be realized in it, as well as the possibility of integration with other planar 
technologies such as planar waveguides, microstrip technology has become commonplace,  
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whole transceiver systems being realized solely in it. However, at higher frequencies its 
inadequacies become apparent.  Since a low-thickness substrate has to be used, dielectric 
and conductor losses can be high due to current hotspots. To overcome these drawbacks, 
one possibility is to use either a parallel-plate or a rectangular waveguide (PPW and RWG 
from here on, respectively) as the basic building block. The electromagnetic field, now 
confined by metal plates, will be transferred more efficiently since the geometrical 
spreading is diminished by the presence of additional/larger scattering boundaries. The 
trade-off is the relatively more complicated design of common devices such as phase-
shifters, matching elements, filters etc. The losses in metal are decreased as well, since the 
currents now flow on wide plates instead of thin strips. However, rectangular waveguides 
(RWG) are more common in practice due to superior field confinement. At moderate 
frequencies, up to approximately 50 GHz, it is relatively simple to fabricate a rectangular 
waveguide. At higher frequencies, starting from the V-band (50-75 GHz), this poses a 
challenge since the losses will increase dramatically with any imperfection introduced. For 
example, as shown in Figure 1.2, junctions of individual parts of the guide have to be 
carefully designed and leak-proofed so as to assure low losses due to leakage. This 
particular device, a W-band mixer, is made of two conjoined parts. The junction is right 
where the dominant TE01 mode has a current maximum (see [26] Ch. 8 for mode definition). 
This is unwise since small contact imperfections may lead to large drops in the power 
transmitted due to strong current leakage there.  

Figure 1.2 Commercial W-band mixer (taken from Microwaves101.com) 

      

Another great problem is how to realize the narrow walls of an RWG if the size is less than 
a few millimeters. Either the broadwall is bent at the edge or the narrow wall is cut from a 
sheet of metal and soldered or welded to the broadwall. The first option may require a large 
compressing force if the sheet being bent is thick and sturdy. Moreover, bending may result 
in a narrow wall with a curved corner, potentially adversely affecting the propagation inside 
the waveguide, since the corners may have a radius of curvature comparable to the 
wavelength. Welding and soldering also become challenging at higher frequencies due to 
thin layers of metal used and structural irregularities in the form of bumps which are 
introduced by high-temperature welding probes. In addition, the welding/soldering may 
change the integrity of the metal at the junction, lowering its conductivity and consequently 
increasing propagation losses. Hence, high-quality rectangular waveguides are generally 
difficult and expensive to manufacture. Another drawback of a full-plate narrow wall is that 
it is difficult to realize walls of general shape, e.g. circular, elliptic etc.  
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In addition, from the production point of view, microwave devices should be easily 
integrated into full, self-contained front-end systems. Therefore, modularity and ease of 
integration are highly prized features. Unfortunately, technologies such as the microstrip 
paradigm or the coplanar waveguide technology suffer from inherent inter-circuit coupling 
at higher frequencies, requiring complicated and costly solutions to overcome this 
drawback.  

To summarize, paramount problems of planar device design encountered at higher 
frequencies are the following: 

 difficult waveguide construction by conventional fabrication techniques 
 conductor and dielectric losses 
 sound electrical contacts 
 translation of lower-frequency designs and concepts  
 integration of different technologies 
 complete system-on-substrate design 
 

In the next section we shall review a technology which successfully overcomes these 
drawbacks. 

1.2 Why SIW? 

 With all the aforementioned issues in mind, a new technology began to take shape 
over the past two decades, based on a simple realization – since most RWG-based devices 
operate in the dominant-mode regime which has electric field lines orthogonal to the 
guiding axis, it is not necessary to use a full-plated narrow wall, but merely one that confines 
fields of such polarization well; any higher-order mode will leak quickly out of the guide. A 
narrow wall composed of an array of vertical metal strips or cylinders is the simplest such 
structure. The earliest use of this concept can be traced back to a patent by Shigeki [2], 
shown in the following figure, whereas the first antenna fabricated in SIW technology, also 
shown here, followed in 1998 [3].  

Figure 1.3 a) Waveguide line patented by Shigeki (taken from [2]), b) First antenna 
implemented in SIW technology by Hirokawa and Ando (1998) (taken from [3]) 

 

a) b)  

 

To better illustrate the concept, consider first a conventional rectangular waveguide of 
width larger than its height and its dominant mode TE01 field distribution (Figure 1.4). The 
electric field of that mode is transverse to the propagation direction, and hence the surface 
currents supported by the narrow wall are as well, as shown in the same figure. Now, one 
way to arrive at the concept of substrate integrated waveguide is to ask the question – how 
much of the narrow wall can one remove and in which manner so that the field inside the 
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waveguide is the least perturbed (“perturbed” meaning differing from the original field), 
while still allowing efficient propagation?  

First, let us, for example, excise thin rectangular strips along the propagation direction from 
the narrow wall. This solution leads to a violent interruption of the current flow (see Figure 
1.4 below), leading to significant charge accumulation on the slots left after the excision and, 
consequently, strong radiation. Such an arrangement leads to dramatic leakage, and may be 
used to create leaky wave antennas, making it a poor guide. 

Figure 1.4 a) TE01 field distribution of a rectangular waveguide over the cross-section 
(the electric field is depicted by solid lines, the magnetic field by dashed ones)  b) 
Surface current distribution on the narrow wall 

a)      b)   

 

On the other hand, if we were to excise strips in the direction of the current flow, and if the 
slots are not too wide (i.e. on the order of 0.1 and less), the dominant mode surface current 
will not be perturbed dramatically because the currents will meander slightly around each 
slot, leading to similar propagation characteristics as in the original waveguide, and strong 
field confinement. The slots may extend from the bottom to the top since the currents are 
not further disturbed.  

However, strips, if too thin, may not be able to support the weight of the upper plate, thus 
requiring a dielectric slab to do so. It is for this reason metal cylinder arrays have claimed 
precedence over alternative elements. Namely, if tightly-spaced metal posts of small 
circumference with respect to the wavelength are placed instead of strip, the field will be 
strongly confined to the guide, and the size of the posts will not perturb it significantly. 

The additional advantage of metal cylinders is the relatively easy fabrication and simple 
embedding into the guide - vertical holes are drilled in the guide and cylinders are plugged 
in and soldered to both the bottom and top plate, or electroplated. This technique allows 
one to integrate the waveguide directly into a substrate; hence the name – substrate 
integrated waveguides. One can easily note that such a procedure grants unprecedented 
freedom in the construction of sidewalls of arbitrary shape. Devices taking advantage of this 
newfound freedom are numerous (see e.g. Potelon et al. [27], [28]), a fine example of which 
is shown in the following figure. 

It shows four 14.6 GHz second-order bandpass filters realized by two circular cavities  
formed by circular fences composed of metal posts and closed from below and above by 
metal caps, integrated into a planar substrate. They are coupled by capacitive irises and fed 
by microstrip lines. Such a design would be challenging to realize using other techniques 
due to problematic integration of a circular wall into the substrate. 
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Figure 1.5 Circular-cavity SIW filter at 14.6 GHz (taken from [27]) 

    

It is obvious that with this flexibility, it is possible to easily merge different geometries, and 
create devices harvesting their best features. As can be noted, the diversity of SIW-type 
devices is grand, a generic such device being quite complex from the analysis point of view. 
Therefore, some simple empiric formulas for leakage loss and the equivalent width of post-
based SIW guides, along with simple design guidelines have been found by a number of 
authors to aid the design. Here we mention the most commonly used ones. An SIW guide, 
shown in Figure 1.6, will behave as a conventional RWG if the ratio of the distance between 

two consecutive posts (period) is in the range 0.22 0.29g gp    , g  being the 

wavelength in the dielectric slab the guide is loaded with. Otherwise, a bandgap in the 
operating frequency range may occur, since an SIW linear guide is a quasi-periodic 

structure. In addition, the post diameter should be chosen as  0.11 0.14g gd   . The 

reason for these peculiar numbers is the following – if a post is too thin, the structure 
becomes mechanically fragile. On the other hand, having posts too thick leads to a 
dispersion characteristic which might possess a bandgap, and the fields may be appreciably 
distorted near the posts. Therefore, there inherently exists a trade-off between structural 
integrity and dispersion characteristics. The last criterion an SIW should satisfy concerns 

the height of the waveguide – namely, it should be kept between 0.3 0.5g gh   . If it is 

too large, higher-order modes readily propagate, and if the height is too small, the current 
density on bounding plates becomes high enough to cause severe conductor losses.       

Figure 1.6 Top view of a short section of an SIW guide 
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If these design rules are adhered to, the equivalent guide width, representing the width of a 
rectangular guide having equivalent dispersion characteristics, can be well-approximated 
by [9] 

    
2 2

1.08 0.1eq

d d
w w

p w
     ,          (1.1) 

where w denotes the distance between post fences, measured between the lines connecting 

centres of respective posts in each fence, and d  being the diameter of a post. The above 

approximation holds well if / 3p d   and / 0.2d w . It should be stressed these 

approximations hold for SIW guides mimicking conventional rectangular guides.  If the 
geometry is more complex, more refined numerical methods are necessary to characterise 
the propagation. These will be discussed in the following section. 

The leakage is another crucial issue of an SIW device. Since the post-fence effectively 
behaves like a thin-wire polarizer, it is intuitively clear that the field becomes less confined 
with increasing inter-post distances. Different authors use different conventions, but the 

inter-post distance is typically kept below 0.1 g in most practical designs, guaranteeing 

leakage losses lower than 310 /Np rad  .  

The frequency and geometry dependence of dielectric and conductor losses, on the other 
hand, are inherited from the rectangular guide ([29], Figure 1.7)  As concerns the dielectric 
losses, they can be mitigated exclusively by a judicious choice of substrate, which can be 
either monolithic, or tailored (see e.g. [30]). The reason is that dielectric losses are related 

to the electric field spatial power density 
2

E , the volume of the dielectric in question, and 

its material loss tangent. In more detail, the dielectric losses, for most materials used in 
microwave devices, can be attributed to the dipole relaxation mechanism, which can be 
phenomenologically incorporated as the imaginary part of the dielectric constant. Then it 
can be shown (see e.g. [31, p. 267]) that the time-averaged heating rate of a material sample 
of volume V due to the monochromatic field E of frequency   can be expressed as 

  
2"1

d
2

V

Q   E r r  , (1.2) 

from which it is evident that, given a material with losses described by " , the only way to 
decrease losses is to either decrease the average power density of the electric field, or to 
reduce the  volume of the sample. Now, in order to lower the average power density of the 
electric field, one can try, for example, to increase the height of the waveguide (we denote 
the height increment by h ) along with the height of the dielectric, resulting in a larger 

geometrical spreading of the field, lowering the power density by a factor of  1/ h  . On the 

other hand, the volume of the substrate increases linearly with h , provided the remaining 
dimensions are kept the same. This results in exactly the same losses as before the height 
increase due to mutual compensation of said effects. Therefore, only the reduction in the 
loss tangent will reduce the losses. This is accomplished by either choosing a monolithic 
material slab of lower loss tangent, or tailoring the dielectric in such a way as to decrease 
the field density in the overall dielectric volume. 

Similar arguments show that conductor losses remain the same upon increasing the height 
– current density is lowered by the same factor the conducting material necessary to 
increase the height is increased. Hence, lowering the conductor losses can be accomplished 
by using a high-conductivity metal such as gold, copper or aluminium, or by “steering” the 
field away from metal boundaries by confining it more to a dielectric medium, though one 
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must be careful if a lossy dielectric is used. A graph is shown in the following figure, 
depicting the comparison of frequency dependences of losses between an SIW guide and an 
equivalent rectangular waveguide over the [25, 35] GHz range; it can be readily observed 
that the dielectric losses dominate over the conductor and radiation leakage losses, and the 
losses are comparable between the guides, following similar trends. Now, if one is inclined 
to design a radiating device using the SIW paradigm, virtually all the standard methods 
pertaining to RWG- and PPW-based antennas are available. However, slot arrays (see Figure 
1.8) are the most common among the many radiating devices due to the ease of fabrication 
by etching slots on metal planes, simple control of the radiation pattern and good matching 
capabilities of slots. In addition, such arrays can be implemented at high frequencies in free 
bands, such as the Ka-band, finding application in sensing and detection (e.g. in automotive 
radar systems). 

Figure 1.7 Comparison of the frequency dependence of losses between SIW and RWG 
structures (taken from [29])  

        

 With the migration of mobile communication to higher frequencies, as is envisioned 
e.g. in the 5G standard, SIW technology may become commonplace as highly-directive 
arrays with good scanning capabilities can be easily realized in it, at a relatively low cost.As 
an example of an SIW array, Figure 1.8 a) shows a prototype pillbox slot array at 77 GHz, 
intended for use as part of an automobile radar system.  

Figure 1.8 : SIW slot arrays; a) pillbox slot array at 77 GHz (taken from [32]), b) Ka-
band SIW Rotman Lens (taken from [33]) 

a)       b)           
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It consists of two PPW guides connected by coupling slots etched in the intermediate plate. 
A parabolic post-fence at the far end of the feeding PPW guide, running from the lowermost 
to the uppermost plate reflects the spill-over power back to coupling slots and tailors the 
wavefront of the wave illuminating the slot array at the uppermost plate.  The whole system 
has a surface of 50 mm53 mm and is only 1 mm thick. The half-power beamwidths in the 
E- and H-plane are 11.5 and 5.5 degrees, respectively, while the overall efficiency is larger 
than 50%. The set-up was fabricated in PCB technology at a smaller cost than would be if 
alternative technologies were employed. From this example, it is clear that the SIW 
paradigm allows straightforward scaling of well-known concepts to higher frequencies, 
while maintaining simplicity of fabrication and decent efficiency.  Figure 1.8 b) [33] shows 
another fine example of the vast possibilities in design inherent to SIW technology. It is a 
Rotman lens, operating at 28.5 GHz consisting of 9 stripline-to-SIW-guide transitions, 
launching a field tailored by both exciting different combinations of ports as well as tuning 
the SIW-guide widths. This field then feeds a 9-waveguide slot array which, in turn, radiates 
into free-space. The authors have shown that firing different port combinations at a time 
allows relatively simple beam-steering with the additional bonus of narrow beams (22 
degrees of -3 dB beam-width) and good matching (-15 dB at the operating frequency).  

 A more recent example, shown in the following figure, is a variant of the slot array 
designed for 14.25 GHz [34].  

Figure 1.9 SIW 16 32 slot array (taken from [14]); a) top view (slot array), b) bottom 
view (feeding network) 

   

 

It consists of two stacked larger 26 cm   19 cm (
0 012.35   at the operating 

frequency) waveguides. The bottom guide is partitioned into 16 smaller waveguides by 
metal post fences. It is fed by a 1/16 stripline-type power divider, delivering power to each 
subguide, exactly at the centre where a coupling slot is located. Each subguide has two 
coupling slots located at its top plate (the lower plate of the upper subguide) at 

approximately 0.25 subguideL  and 0.75 subguideL .  The power is then transferred to each upper 

subguide which are, in turn, split further into two smaller subguides by a transverse post 
fence located in the middle of the larger subguide; each has 16 radiating slots etched in its 
top plate. Hence, the power delivered from the lower subguide is passed on at the centre of 
each of these smaller subguides in order to reduce the long-line effect, i.e. to create a 
corporate-fed array. This greatly enhances the operating band, since the phase error is 
reduced roughly fourfold, thus stabilizing the radiation pattern – the pointing angle is 
almost fixed at 0.5 degrees in the E-plane, whereas it is 0.25 in the H-plane over the [14, 
14.5] GHz band. In addition, the gain is 24.11 dB at the central frequency. It should be noted 
that the device is efficiently fed by a stripline, owing up to relatively good matching of the 
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stripline-to-guide transition. This demonstrates the simple merging of disparate 
technologies, allowing the design of interesting hybrid devices.   

 Yet another example of the complexity achievable with SIW techniques, is the 3-
waveguide SIW Rotman lens at 24.15 GHz [34], shown in Figure 1.10. It consists of three 
stacked guides of identical dimensions. The bottom one contains a lens-type feed akin to the 
one in [33] – seven SIW horns are each excited by an SMP connectors, while two dummy 
ports serve to absorb the backscattered energy. Each horn can be fired separately, allowing 
one to tailor the feeding field, which is coupled to a set of 15 separate phase shifters in the 
intermediate guide by novel star-shaped slots. This transition has a larger-than 70 % 
efficiency for all horn excitations aside from the extremal one (#3 in Figure 1.10 b)). The 
coupled field is then passed through phase shifters further tailoring the feeding field. The 
energy is then forwarded to the upper waveguide, comprised of 15 SIW waveguides, each 
harbouring 20 radiating slots in its upper plate. This transfer occurs at the middle of the 
radiating guide in order to reduce the phase error and, consequently, broaden the operating 
band. This particular design is endowed with excellent steering capabilities, good matching 
and low side-lobe levels, thus showing the power lying in design flexibility of SIW devices.  

Figure 1.10 3-waveguide SIW Rotman lens (taken from [34]: a) top view (array), b) 
feed layout, c) mounting plate and connector layout  

                    

 The greatest feature of SIW technology is the possibility of realizing complete 
systems on a single substrate. Since its advent, a plethora of devices have been realized in 
it, ranging from filters (see e.g. [4],), directional couplers [5], circulators [6], magic T-
junctions, planar diplexers etc. In addition, a number of active devices have been 
implemented as well, such as feedback oscillators [7], Gunn diode oscillators, single-
transistor power amplifiers and mixers. Hence, all the ingredients necessary to realize 
system-on-substrate devices are available. In fact, one of the current research trends in the 
field is geared towards the realization of self-contained systems on a single substrate [8], 
since SIW structures can be made to have considerably lower losses and inter-circuit 
coupling than the alternative technologies such as the coplanar and microstrip waveguides.   

In addition, as already mentioned, novel concepts and merging different planar technologies 
become readily available when using the SIW paradigm. For example, a compact half-SIW 
half-shielded stripline structure for measuring permittivity in the 0.5 to 20 GHz range was 
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designed by Bang et al. [35]. In 2014, a bandpass SIW filter at 140 GHz with decent insertion 
loss of 1.9 dB was realized in LTCC technology by Wong et al. [36] as well. A very interesting 
concept was proposed by Bozzi et al. [37] which revolves around ink-jet printing SIW 
structures onto a paper substrate, paving the way to a more eco-friendly microwave 
component production.  

Fine examples of devices integrating most of the aforementioned qualities can be found in 
[38], where several novel concepts are summarized, such as the so-called “LEGO” approach 
to building devices, exemplified by the 3-D 128 element SIW array (shown in the following 
figure). 

Figure 1.11 3-D 128-element SIW array (taken from [39]) 

    

Figure 1.11 shows an 8x16 slot array, composed of a horizontal feeder in the form of an SIW 
guide with a 1:8 power divider, each branch delivering power to its respective SIW array 
placed vertically onto the feeding guide, but rotated at 45 degrees with respect to its 
longitudinal direction. This is done since this geometrical arrangement makes it possible to 
reduce the phase difference between feeding branches. Now, each radiating guide has an in-
built 1:16 power divider, providing excitation to each of the 16 tapered-slot arrays; these 
comprise two longer longitudinal slots tailored to radiate end-fire. The LEGO approach is 
apparent in the assembly of the whole array – the modules used (the feeding guide and 
radiating ones) are fabricated independently and connected in a simple fashion, by fixing 
the radiating modules vertically to and soldering them onto the feeding guide directly.  This 
provides a powerful framework due to its flexibility and the simplicity of both conception 
and fabrication. 

An interesting concept is the introduction of tailored dielectrics into rectangular/SIW high-
frequency guides to reduce the losses, an example of which is shown in the following figure. 
In this case, an air gap was introduced into an LTCC substrate integrated waveguide, feeding 
a slot array, to reduce the dielectric losses crippling the efficiency of a device at the 
frequency of operation (60 GHz).  In essence, the presence of an air gap has the effect of 
redistributing the field in such a way as to lower its intensity in the volume occupied by the 
pertinent dielectric. 
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Since dielectric losses are related to the electric field density in the dielectric volume as (1.2)
, within the operating frequency band, it follows that the losses will be lowered; the effect 
of the air-gap thickness on the overall losses is shown in the following figure.  

Figure 1.12  LTCC oversized rectangular slot array (taken from [30]) 

 

Figure 1.13 The effect of air-gap thickness on the dielectric/overall losses in the 
oversized LTCC guide (taken from [30]) 

 

Though the methodology of lowering the losses in this particular example can be equally 
applied to both rectangular and SIW guides, since it is much easier to fabricate SIW guides 
at higher frequencies it presents a potentially widespread framework for designing low-loss 
devices. 

 In sum, the SIW paradigm provides a simple and flexible framework for designing 
microwave/mm-wave devices, relying on embedding posts into suitable planar substrates 
to create waveguides. Since the posts can be arbitrarily arranged, devices having exotic 
shapes, previously infeasible to realize, can be fabricated, while maintaining the high-Q 
factor and losses akin to conventional rectangular waveguides. Hence, it overcomes the 
limitations of standard waveguides in terms of scalability to higher frequencies, and lends 
itself to low-cost mass production. Moreover, this technology is easily integrated with 
existing planar technologies such as the coplanar or microstrip guides. In addition, a large 
number of active and passive devices have already been designed and experimentally 
verified over the years, allowing one to create entire systems on a single substrate. As the 
transition to ever higher bands due to clutter becomes increasingly necessary, technologies 
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enabling simple transfer of well-established concepts from the microwave range will 
become dominant. A very likely candidate for the throne is the SIW technology.  

 

1.3 Too many posts in the waveguide – the analysis of SIW-
type devices 

 If one considers a typical SIW device for a moment, be it a simple waveguide section 
or a front-end system, it can be readily observed that it can be quite complex, comprising a 
large number of posts, slots, active devices and circuits, arranged in a complicated fashion. 
Hence, even a simple structure such as a rectilinear SIW-type waveguide presents a 
challenge in terms of detailed analysis. As mentioned in the previous subsection, a number 
of simple design rules and constraints have been devised over the years, extracted from 
experimental data and numerical data obtained from commercial electromagnetic solvers. 
As useful as they are in the first design, they fall short of taking into account all the 
complicated effects of interaction in such a device. Hence, at best these “rules” and simple 
formulas work in a narrow frequency and geometry-parameter range. It is then necessary 
to introduce more refined analysis tools to characterize the behaviour of SIW-type devices 
more completely.  Indeed, quite a number of diverse methods have been devised to analyze 
SIW-type geometries. These fall into roughly two categories: approximate-analytic 
methods, relying on rough approximations of general integral or differential problems, 
often simplified by some special symmetries (such as periodicity or mirror symmetry) or 
neglect of higher-order effects, or based on parameters obtained empirically and usually 
fitted according to some interpolation scheme; the full-wave methods, on the other hand, 
accounting fully for complicated effects of scattering, based on either finite-
difference/finite-element methods or the method of moments. Of course, hybrid methods 
merging several approaches are common as well. Here we briefly review several methods 
successfully employed to analyze SIW guides. This is by no means an exhaustive overview, 
but rather a bird’s-eye one with emphasis on methods either relating to the method 
presented in this thesis, or most commonly applied.   

 Xu et al.  [10] use a finite-difference frequency-domain (FDFD) algorithm to analyze 
rectilinear SIW sections, based on the imposition of periodicity in the z direction. In 
the x and y direction, perfectly-matching layers are set to truncate the problem 
domain laterally. Then the finite-difference scheme is rephrased as an eigenvalue 
problem from which the complex propagation constants are finally extracted, which 
are found to be in good agreement with the ones calculated with HFSS. The authors 
claim the method is applicable to arbitrary open periodic guiding sections, though 
the exemplary devices are exclusively rectilinear SIW sections.   

 Hirokawa and Ando [12] represent metal posts by a small numbers of axially 
directed, uniform electric currents flowing on post surfaces. The authors formulate 
a method of moments problem with the aid of an accelerated Green’s function, the 
solution of which gives the propagation constant of the SIW. The method is 
inherently restricted to devices comprising metal posts of diameter sufficiently 
smaller than the dominant wavelength, for only uniform currents, having negligible 
variation around the diameter, to exist. This excludes, for example, 90-degree bends 
based on electrically larger metal posts. In addition, no device containing dielectric 
posts of any kind can be analyzed.  

 Cassivi et al. [11] apply the Floquet theorem in conjunction with the boundary-
integral resonant-mode expansion to calculate the generalized admittance matrix of 
an infinite array of SIW guide sections. The propagation constants are then 
extracted as the eigenvalues of the system matrix. Then the guide equivalent width 
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formula is fitted by a least square method. The guide sections analyzed should 
confine the field strongly, since the method relies on enclosure of the structure by 
metal walls. A major drawback of this method is its inability to analyze radiating 
structures and ones containing dielectric posts.      

 Deslandes and Wu [9] calculate the propagation constant of an SIW guide from the 
reflection coefficient of a plane wave scattering off a side-wall. It is obtained by the 
transverse resonance technique, which relies on the knowledge of the side-wall 
surface impedance, obtained by the authors from an MoM procedure. 

 Though not strictly related to SIW modeling, Elsherbeni and Kishk [40]  formulate a 
multiple-scattering method for the analysis of plane-wave scattering off of axial-
translation invariant dielectric and/or metal cylinders. By expanding the fields as 
sums of cylindrical-azimuthal modes, and applying the Gegenbauer addition 
theorem, through which they are able to express the total field centered in the 
coordinate system of a particular cylinder, the authors write down a system of 
coupled boundary conditions. These lead to infinite linear systems, which are 
truncated and solved for scattering coefficients. The method of SIW analysis 
presented in this thesis partially relates to this one. 

 Tsang et al.  [41] consider the problem of scattering off of metal posts in parallel-
plate waveguides, specifically applied to the signal integrity analysis in high-speed 
electronic circuits. Firstly, the dyadic Green’s function is derived in terms of the 
cylindrical-azimuthal vector eigenfunction expansion. The fields scattered off the 
posts are modeled using the same vector eigenfunctions the Green’s function is 
expanded in, allowing simple application of boundary conditions on posts using the 
Gegenbauer addition theorem for cylindrical harmonics. The enforcement of 
boundary conditions leads to infinite linear systems which are truncated and solved, 
giving the scattering amplitudes of posts. The excitations considered are restricted 
to magnetic currents modeling the through-hole signals, and the analysis is 
restricted to shielded guides in dominant-mode operation, but was extended to the 
case of stacked-guide configurations by Chen et al. [42]. This particular method is 
used as a starting point of the method presented in this thesis.  

 Wu and Kishk [13] extend the method of Elsherbeni and Kishk (1992) to scattering 
off of cylinders embedded in parallel-plate waveguides. By using the cylindrical 
eigenfunction expansion, they formulate an infinite linear system relating the 
incident and the scattered field amplitudes, which they truncate and solve. The 
problems considered do not have any variation normal to the metal plates and the 
method applies to closed structures. Waveguide ports are used as excitations and 
modeled through discretization by small sections over which the current is assumed 
to be uniform.  An especially appealing feature of the approach is its applicability to 
sufficiently laterally closed structures harboring PEC, finite-conductivity or 
dielectric posts, in almost arbitrary arrangements. The drawback is the inability to 
include the effect of higher-order modes having variation in the axial direction (of 
cylinders); fortunately, one can turn a blind eye to this feature since in practice one 
almost exclusively encounters devices which support the propagation of only the 
lowest-order modes. 

 Wu and Tsang [43] extend the analysis of Tsang et al. (2001) to the case of PPWs 
loaded with two-layer planar dielectrics. The authors approximate the effect of 
higher-order modes, and do not consider the presence of a general multilayered 
dielectric.  

 Coenen [14] uses an approach based on integral equations similar to the one of 
Tsang. By expanding the field in terms of a radial transmission line representation, 
and considering solely modes having no variation across the height of the SIW guide, 
he is able to formulate linear systems in scattering amplitudes. Though efficient and 
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conceptually simple and familiar, no higher order modes are considered, as well as 
the radiation from apertures in metal plates. The method is successfully applied to 
characterization of propagation in SIW guides and to design of several waveguide 
components.   

 Arnieri and Amendola [15], [16] use an approach similar to Tsang et al. to analyze 
post-scattering in general single-waveguide SIW devices, coupling it to an MoM 
procedure which takes into account the possible presence of rectangular slots. 
Coaxial and waveguide ports are used as excitations. The method presented in this 
thesis is conceptually similar to this approach. 

 Diaz Caballero et al. [44] use an approach in the vein of Coenen and Tsang, again 
using the radial line representation to describe the field in an SIW guide. As Coenen, 
the problems the authors consider are 2D and closed. The only excitation modeled 
is the waveguide port. The method is formulated in such a fashion that projection 
integrals, which need to be performed to obtain post-scattering amplitudes, can be 
obtained either in an approximate analytic way or upon application of the fast 
Fourier transform. This renders the approach extremely efficient, even more than 
competing fast methods of SIW analysis, such as the one presented in [13]. As 
already stated, the analysis is restricted to closed structures, both laterally (by 
means of tight post fences) and longitudinally (by enclosing metal plates). 

 

1.4 Aims of the thesis  

  With the increasing use of SIW technology, and a general lack of fast and accurate 
full-wave solvers suited to the analysis of a wide span of SIW devices in mind, the following 
objectives were formulated: 

 to devise and implement a numerical method of analysis which could handle a large 
variety of SIW devices with high accuracy and relatively low computational 
resources (compared to standard commercial solvers), including scenarios 
involving planarly layered dielectric media in PPWs. The latter, as elaborated later 
in the text, should be included in order to assess the leakage loss, especially at higher 
frequencies, of burgeoning SIW devices loaded with layered dielectrics.    

 to explore general characteristics of SIW devices using the devised analysis based 
on modal properties of fields. 

 

The first objective emerged out of the unavailability of reliable software tools at the time of 
the conception of this thesis. Though some methods had been devised, they were not 
complete in the sense that they could not be applied to a wide variety of geometries, either 
due to restrictions coming from the approximate character of the analysis method, or 
computational inefficiency due to too large a number of unknowns to be solved for.  

The second objective crystallized during the actual work on the thesis as a byproduct of the 
particular mathematical framework adopted. Namely, it was concluded that a particular 
modal field synthesis, described later on, would give the fastest-converging algorithm. This 
modal decomposition allows the resolution of the total field into several wave-species, such 
as the free-space waves, PPW waves, post-scattered waves etc. This allows one to identify 
which scattering processes contribute most significantly to the overall field and, 
consequently, devise rule-of-thumb guidelines for the design of devices. Additionally, it led 
to the improvement of the algorithm efficiency through approximations based on 
disregarding negligible wave interactions.  
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1.5    What lies ahead - thesis outline 

 To facilitate navigation through this work, and make its structure more transparent, 
here we expose its skeleton. We start the following chapter with section 2.1, containing the 
discussion on the types of structures we intend to analyze, along with some simplifying 
assumptions and restrictions. Then we venture into the analysis, considering the most 
general problem – a series of stacked SIW guides coupled by rectangular slots. We show 
how the equivalence principle enables one to simplify the problem by partitioning it into 
sub-problems. Section 2.2 then delves into the specifics of modeling what we refer to as the 
interior and the exterior problem – scattering inside an SIW guide, and radiation into a half-
space, respectively. The interior problem relies on an efficient mathematical representation 
of fields, both the incident due to impressed sources and the post-scattered ones. We define 
the problem, and discuss the possible attacks on it in the form of various electromagnetic 
potential formulations. Then we proceed to the formulation used, deriving the necessary 
Green’s functions, both for single and multi-layer dielectric loaded PPWs. Here the central 
results of the thesis concerning the analytical part are presented, and are a) the derivation 
of the general-form dyadic Green’s functions in stratified-media loaded PPWs, b) the 
derivation of scalar potential functions involved in a) for a PPW with an arbitrary number 
of layers, c) the clarification of mathematical and numerical issues related to b), previously 
uncovered or wrongly circumvented in the existing literature, and d) the demonstration of 
superiority over commonly used approaches to a). Then the following subsection deals with 
scattering off of metal and dielectric posts in PPWs. It is shown how one can arrive to the 
scattered field representation from the dyadic Green’s function by way of the Gegenbauer 
addition theorem. The formulation of linear systems in scattering amplitudes through 
application of boundary conditions is demonstrated. The approximations involved, and 
empirical criteria for choosing the “optimal” number of electromagnetic modes are 
presented.  The subsection after is concerned with the modeling of standard excitations in 
SIW devices. Namely, it is shown how the coaxial and waveguide port can be modeled and 
how their S and Y parameters can be computed using already calculated quantities. After 
that, a short subsection is devoted to the exterior problem, pertaining to half-space 
radiation.  

 With all the ingredients necessary to analyze closed SIW structures, in section 2.3 
we tackle the problem of SIW devices containing narrow rectangular slots. We build upon 
the premise laid out in section 2.1, demonstrating how one can reconcile the presence of 
both circular-cylindrical posts and slots to formulate the generalized electromagnetic 
problem, and solve in the most straight-forward and convenient way. The latter, of course, 
is intimately tied to the efficiency of the method, and is especially emphasized. We show 
generalized expressions for direct slot admittances in arbitrarily stratified dielectric-loaded 
PPWs (“direct” meaning “without the presence of other scatterers”), encountered in the 
MoM problem, and suggest strategies for the computation thereof. In addition, we show how 
to compute total slot admittances using quantities already computed in the mode-matching 
analysis. Then, in section 2.4, we show how to improve the efficiency of the method by 
various techniques aiming to either a) reduce the number of modes used for the description 
of the electromagnetic field, thus reducing the size of linear systems arising from boundary 
conditions, b) to reduce the number of computations involved in evaluation of integrals 
occurring in the mode-matching or MoM analysis. It is demonstrated that such strategies 
may be easily applied, leading to significant reduction in computation time and CPU/RAM 
load.  To conclude chapter 2, we reiterate the key concepts of our method and emphasize its 
advantages over the alternative approaches proposed in the literature. In addition, we 
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suggest further extensions and improvements of the method, some of which have already 
been completed during the writing of this thesis. 

 Chapter 3 serves to demonstrate the performance and limitations of our method 
through a series of numerical tests of varying complexity. Several SIW devices are simulated 
using an in-house MATLAB code based on the method, and the standard industry “weapon 
of choice” FEM solver HFSS by Ansoft. The results are compared in terms computation time 
and CPU/RAM load.   

 

1.6 A note on notation, units and all that 

Dear reader, I wish to impose on you the fact that though I have decided to make my life 
miserable by choosing this rather mathematical topic, I still have not arrived at the point 
where I would deliberately try to drag you down with me to the pits of notational hell, 
decorated with a schizophrenic unit system changing convention page to page. To prevent 
(or at the very least, combat) such sadism, this section sets and clarifies the choices made 
pertaining the common notation and units.    

 First of all, as is common in modern literature concerning applied electromagnetics, 
the unit system used throughout is, without exception, the SI system. As for the notation, we 
more or less follow the standard mathematical notation used in the majority of relevant 
literature. Scalar quantities are denoted by standard letters, whereas vectors are denoted 
by bold-type letters (e.g. the electric field is denoted by E). On the other hand, dyadics (i.e. 
matrices or tensors of arbitrary rank) are denoted by underscored capital bold-type letters, 
e.g. the Green’s dyadic is denoted as G . The explicit components of a dyadic, however, are 

denoted in a different manner with respect to the standard electromagnetic convention. For 

example, the element 
33G  of the Green’s dyad is denoted as ˆ ˆz z , where   is the symbol 

of the outer product, instead of ˆ ˆzz as would be the case in standard literature. We opted for 
the former since it explicitly distinguishes between matrix elements and scalar products, 
thereby avoiding potential confusion.  
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2 HYBRID MODE-MATCHING/ 

MOM FOR SIW DEVICES 

 As demands on the performance of SIW devices increase, so does their electrical size 
and complexity. Unfortunately, as is always the case, their analysis and design complicate 
concurrently and considerably. Although one may still be able to use commercial tools for 
these purposes, their inherent approach to problem domain discretization may render them 
useless even on high-end configurations if the electrical size or the number of elements is 
large enough. Therefore, in the past decade, large effort has been put in devising methods 
of analysis and design, which would alleviate the aforementioned issues, partly at the very 
least. In this chapter, we describe one such method, capable of analyzing large and complex 
SIW geometries with great accuracy and significant time saving anywhere from one to two 
orders of magnitude, compared to standard EM CAD tools. Moreover, it even renders 
possible the analysis of devices too complex to be handled by commercial solvers. Its 
efficiency stems from merging the mode-matching technique, suitable to the analysis of 
scattering off cylindrical posts ever present in SIW devices, with the method of moments, 
suited to the task of accurately analyzing the effects of slot presence.  

 We describe the intricacies behind it in detail, following the approach presented in 
Casaletti et al. [45], [46], the exposition being as follows: in Section 2.1 we describe the 
general problem setup and its idiosyncrasies, which we exploit to construct an efficient 
mathematical model. In addition, we discuss how the problem of calculating the EM field in 
planar SIW devices can be simplified through the application of the equivalence principle in 
conjunction with the scattering superposition principle. In Section 2.2 we focus on the 
mathematical representation of fields radiated by sources, relying on the derivation of the 
PPW Green’s function, both for PPWs loaded with a single dielectric and for the more 
general case of longitudinally stratified media. Moreover, the modelling of typical sources 
(coaxial cables, waveguide ports and slots) and fields scattered by posts, both PEC and 
dielectric, will be discussed in detail. Having collected all the necessary ingredients of the 
analysis, we delve into the application of derived principles to generic SIW devices in 
Section 2.3., which will touch upon the subject of modelling narrow slots etched in 
conducting plates of an SIW, with emphasis on the formulation of a method of moments 
problem, along with a discussion of approximate methods used for fast calculation of 
admittance matrix elements. Our focus is on the derivation of linear systems of scattering 
coefficients and the approximate methods of solution, both from a mathematical and 
computational perspective. In addition, we discuss the criteria according to which we 
choose the sufficient number of basis functions guaranteeing desired accuracy Moreover, 
we show how to extend the analysis to the case of an arbitrary number of waveguides 
stacked on top of each other, coupled by slots in common metal plates. To conclude this 
chapter, we show results obtained by this method and compare it against the results 
obtained by commercial EM solvers, in Section 2.4.  
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2.1 Modeling a generic siw device – general 
considerations 

As shown in Figure 2.1, a typical SIW device consists of 

 A single or a number of parallel plate waveguides, 
 Metal and/or dielectric cylindrical posts, 
 Slots etched in metal plates,  
 Sources (coaxial probes, waveguide ports, slot transitions etc.). 
  

Figure 2.1 Schematic of a generic SIW device  

 

      

Our aim is then to model this very general geometry in the most convenient way possible 
which will lend us use of analytical tools, while preserving accuracy and simplicity. 
Therefore, we have to introduce some simplifying assumptions and establish the region of 
their validity. 

2.1.1 Initial assumptions and simplifications 

 Firstly, parallel plates which make up a PPW, typically made of copper, aluminium 
or other good conductors, restrict the propagation of the electromagnetic field in the 
longitudinal direction, denoted z  here, whereas the field can freely propagate in transverse 
directions. However, a common characteristic shared by the majority of SIW devices is the 
enclosure of parallel plate waveguides by sidewalls, constituted by fences of tightly spaced 
vertical cylindrical posts of small diameter (compared to the operating wavelength). As 
such, these devices suffer negligible leakage in the transverse direction. Therefore, one may 
disregard any phenomena occurring outside of the region enclosed by post walls. Now, if 
one wishes to couple a device to other waveguides or the surrounding medium, slots may 
be etched in the metal plates which propagate the field further by virtue of displacement 
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currents induced on them. A good example of these traits is the pillbox-type SIW antenna, 
e.g. [47], [48] which actually closely resembles the device shown in the previous figure. It is 
typically composed of two waveguides stacked on top of each other, coupled by slots etched 
in the common metal plate. The bottom waveguide has a feeder embedded in it which drives 
the antenna. The sidewalls confine the field and guide it towards a set of coupling slots, 
which transfer the energy into the upper waveguide. The field then reaches the slot array in 
the uppermost plate, tailored to radiate a specific pattern. It should be noted that in practice 
the radiating elements are placed sufficiently far away from the edge of the antenna so as to 
minimize grating lobes due to edge diffraction. Moreover, the elementary radiator’s pattern 
is usually such that it radiates negligibly towards the edge. These facts, although seemingly 
unrelated, motivate us to introduce the first simplifying assumption – we can consider the 
parallel plates as being infinite in extent. This will save us from the trouble of accounting for 
diffracted or fringing fields, both the ones induced at plate edges and at ends of truncated 
waveguides. 

 The second assumption is related to the conductivity of metal the plates are made 
of. In practice, high conductivity metals such as copper are used to realize metal plates, 
usually quite thin compared to the operating wavelength (less than / 30 ). Though the EM 
field generally will leak through plates, its amplitude is negligibly small, as long as the plates 
are at least a couple of skin depths thick. This leads us to consider the plates as perfect 
electric conductors. Moreover, we will consider regions separated by metal plates as non-
interacting (of course, unless there are apertures in plates), and will remain so even when 
low-conductivity metals are employed, provided the thickness is large enough to kill off the 
field sufficiently. This assumption will prove crucial in simplifying the SIW problem, 
because it enables one to split the initial problem domain into subdomains, as will be 
discussed shortly. In addition, we shall consider the plates to have zero-thickness, since in 
most practical cases the thickness is small and it does not influence the field transmission 
through apertures. It should be stressed here, however, that plate thickness, even a 
relatively small one, can play a great role if a large number of slots is etched in plates, as 
demonstrated by Mazzinghi, Freni and Albani in [49]. The cumulative effect of individual 
slot phase modulation on the feeding wave may result in lower gain of slot antennas due to 
unwanted progressive phasing. However, in most cases of interest, this does not happen as 
the number of slots is usually moderate and we shall not consider it henceforth.  

 The next assumption concerns the metal and dielectric posts. In SIW devices, posts 
are typically used to realize fences, as well as lumped-like inductive elements to realize 
microwave filters and phase shifters. They are commonly circular-cylindrical- shaped since 
it is the simplest shape to realize in practice. Therefore, we will consider all posts as being 
of circular-cylindrical shape, although one can, in principle, model even elliptically-shaped 
posts using slightly more complicated special functions to describe fields scattered off of 
them. We stress here that all the posts considered run from the bottom to the top of a PPW 
they are embedded in. Posts which do not, of the kind that can be found in, e.g. , gap 
waveguides, cannot be taken into account by the present method.  

 The last assumption on geometry we will make is on the type of slots modelled by 
this method. In practice, the most common type of slot used is the narrow, rectangular-
shaped one, having one dimension comparable to the operating wavelength (usually close 
to 0.5 ), the other one being an order of magnitude smaller (below /10 ). They are easier 
to control than wide slots, and are commonly used as basic radiating elements in arrays, 
owing up to their radiation pattern which is approximately the dual of an electric dipole. 
Therefore, we will restrict our discussion solely to narrow slots. 
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 Although these assumptions may seem a bit restrictive, fairly general geometries 
can be successfully modelled, ranging from closed resonating structures, waveguide filters, 
phase shifters, to complex slot arrays etc. , as will be shown in the following sections. 

 Finally, we should add a few remarks on the media occupying the problem domain.  
We will be dealing solely with non-magnetic media, although the general field formulas will 
have the effects of magnetization incorporated. All media are considered linear, time-
invariant, piecewise-constant and lossless (although small losses may be added in proofs 
where convenient). The fields we will be interested in are time-harmonic, with time-

dependence j te  suppressed.  

2.1.2 Splitting the problem domain 

 Armed with all these starting assumptions, we can finally tackle the problem. It is 
obvious that a general SIW device can be quite complex, consisting of several stacked 
waveguides and having hundreds of posts and slots, with several feeds. Firstly, we wish to 
simplify the problem by splitting it into subproblems, solve them separately, and reconnect 
them in some fashion in order to solve the complete problem. To do this, we will employ the 
equivalence principle [26] as follows. 

 Consider a number of stacked waveguides coupled by slots and having arbitrary 
post configurations embedded, as shown in the previous figure (Figure 2.1). To model the 
effect of slots, we resort to an MoM procedure [50], i.e. we will make use of the boundary 
conditions on slots to reformulate the problem of field scattering off and transmission 
through slots into an integral equation. First, one notes that across any aperture in a metal 
plate, the continuity of tangential electric and magnetic fields must hold. Second, since slots 
are considered narrow, we can assume that only tangential electric fields induced across 
them will have a significant amplitude. Indeed, Stern and Elliott [51] conducted an MoM 
study of slot field distribution where it was established that the normal component of the 
electric field is roughly three orders of magnitude smaller than tangential ones, and 
neglecting it does not produce any noticeable changes in obtained results.  

 Now, according to the equivalence principle, the electromagnetic field scattered off 
of any body or surface can be thought of as due to equivalent currents lying on the boundary 
surface of the scatterer. Therefore, we enclose each slot by a box of vanishing thickness 
having the same dimensions as a slot, and distribute equivalent currents on its surface, as 
shown in Figure 2.2. (We show only two adjacent problem regions in the figure for the sake 
of simplicity).  In applying this principle, we have several options at our disposal. We could 
distribute both electric and magnetic currents on the surface of the boxes, having the 
following form: 

             
   
   

ˆ

ˆ
i i

i i

 

 

M r E r n

J r n H r
 , slotsr .    

             (2.1) 

These currents radiate fields 
1 1E ,H  and 

2 2E ,H  into their respective regions of definition 

that satisfy Maxwell equations and boundary conditions, whereas we can freely choose 
which field they radiate into the empty volume enclosed by the box, so we will set them to 
zero for convenience. Unfortunately, this particular choice of equivalence leads to difficult 
field evaluation since, due to the presence of apertures in metal plates, no analytic Green’s 
functions are available for such structures. However, a more convenient form of the 
equivalence principle is obtained upon realizing that one can fill the volume of the box with 
arbitrary material without altering the physics. Therefore, we fill the volumes with the same 
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material the plates are made of, which in our case is PEC. This has the effect of shorting out 
the electric currents, with only magnetic currents remaining. These currents will now be 
radiating above or below infinite metal plates, as shown below, and such structures possess 
well-known analytic Green’s functions. 

The currents are set to have equal magnitude but opposite direction, i.e.  2 1M M ,  since 

this arrangement automatically guarantees the continuity of electric fields across slots. This 
is easily seen if one recalls that the radiation of magnetic dipoles is dual to electric ones. It 
should be noted that this holds if plates are infinitely thin. If the thickness is finite, one has 
to setup a waveguide problem for each slot, placing a different pair of oppositely directed 
currents of equal magnitude, spaced at infinitesimal distance from each other, at each 
waveguide opening.  

Figure 2.2 Application of the equivalence principle 

                  

 

Having metallized the slots, we had “split” the problem into smaller ones, enabling us to deal 
with each region (PPW or half-space) separately. Placing magnetic currents, on the other 
hand, enables us to connect these regions upon applying boundary conditions across slots. 
As stated, enforcing equal magnitude and oppositely directed currents over slots is 
equivalent to the enforcement of the electric field continuity. However, the tangential 
magnetic field is continuous across slots as well, and we need to enforce this condition by 

stating:   

                               , 1 , 1 , 1 , 1
ˆ ˆ

inc i q slots i q inc i q slots i q

   

   
       
   
H r H r n H r H r n ,              (2.2) 

where the LHS is the total tangential magnetic field in waveguide 1i   evaluated at any 

point q


r  on the lower q-th slot boundary surface,  i  denoting the interface (plate) number, 

starting from the lowermost one, and the RHS is the total tangential magnetic field in 

waveguide 1i  evaluated at point q


r  located on the upper slot boundary surface a 

vanishing distance  above q


r in the normal direction n̂  .

incH is the field created by 

impressed sources, consisting of two contributions, the first being the direct source 
contribution: 
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               ,

'

, ' ' d 'source

inc n n n S

V

j  H r G r r M r r  ,   (2.3) 

accounting for the field of a source embedded in the n -th region, which is impinging directly 
on the slot without the presence of scatterers, and is computed by a convolution of the 

impressed source 
SM with  the dyadic Green’s function of the n -th region. The second 

contribution is the magnetic field of those same impressed sources scattered by obstacles, 
denoted by 

    source source

scattered obstacle i

i

H r H r  .  (2.4) 

In our case,  the only scatterers inside a PPW will be metal or dielectric posts (recall that we 
have replaced slots by equivalent currents), whereas no scatterers in free-space will be 
assumed. How to actually compute this contribution will be shown in following chapters.  

Furthermore, ,slots nH is the field scattered by slots in n -th region, again consisting of a direct 

contribution of all the slots ,

slots

inc nH , defined as 

                 ,

'

, ' ' d 'slots

inc n n n slot

slots V

j  H r G r r M r r ,  (2.5) 

slotM being the equivalent magnetic current of a slot in the given region, and an obstacle-

scattered contribution slots

scatteredH    

                                slots slots

scattered obstacle i

i

H r H r .    (2.6) 

As can be seen from the discussion, we split the total field into a direct and scattered 
contribution, invoking the scattering superposition principle [52] which enables us to 
further simplify the analysis. In this way, one can make fairly general assumptions on the 
types of fields the scatterers create and use them to write down the total field as a sum of 
all the separate contributions. If one had not the ability to do so, it would hinder any 
attempts at analysis, since one would have to guess the proper form of the total field, which 
is an infeasible task. 

Summa summarum, using the equivalence principle and the scattering superposition 
principle, we have managed to set up the problem of finding fields in an arbitrary SIW device 
obeying previously discussed restrictions. The problem has been divided into subproblems, 
one for each waveguide region, and dealing with each of them is the next topic to be 
discussed.  

 

2.2 The interior and exterior problems  

 There are two kinds of regions in an SIW device. The first one is the waveguide 
region, bounded by parallel metal plates and post fences. The second one is a half-space 
region where, of course, free radiation occurs. In order to characterize them, one needs to 
be in possession of their respective field propagators, i.e. Green’s functions, enabling one to 
calculate the fields due to arbitrary sources, impressed or induced. In this section we will 
deal with the specifics of the field calculation. We show how to derive the necessary Green’s 
functions and represent post-scattered fields. 
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2.2.1  The interior problem 

Figure 2.3 shows the general configuration of an interior region, i.e. an SIW section of an 
SIW device.  

Figure 2.3  Section of an interior SIW region 

 

 

 

It consists of two parallel metal plates, arbitrary sets of circular-cylindrical posts, feeds 
modelled as magnetic currents and possibly slots etched in either of the plates. The goal of 
the analysis is clear – find the total EM fields inside the region satisfying the Maxwell 
equations 
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subject to appropriate boundary conditions on plates, slots and posts. As discussed in the 
previous section, due to the linearity of Maxwell equations, we can, in principle, resolve the 
field into separate contributions due to sources without the presence of posts (referred to 
from now on as the direct field)  and post-scattered field (scattered field from now on). In 
other words, first we remove the posts and attempt to find the field in a PPW solely due to 
impressed sources. Later on we will add the field scattered off of posts, whose amplitude is 
unknown, and enforce the boundary conditions on them to find the amplitude.  

 From curl equations (2.7) it follows that the vector fields satisfy the following 
differential equations 

         

2

2

k j
j

k j
j







 
     

 

 
     

 

J
H H M

M
E E J

 .  (2.8) 

We could solve any of these two equations, and obtain the remaining field by (2.7). 
However, as we will transform (2.2) into an integral equation to formulate an MoM problem, 
we turn our attention to the H-field equation.  
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As one can see, we need to solve this equation for two excitations – the magnetic current 
M  and electric current J . However, SIW devices are commonly fed by aperture excitations 
such as horns, slot-transitions and coaxial probes. It is well-known that such feeds are most 
conveniently modelled by equivalent magnetic currents [26]. Therefore, one rarely needs 
to consider the electric currents as well. Hence, we will assume that there are no impressed 
electric currents, i.e. 0J  .  This leaves us with the following master equation 

                  2k j   H r H r M r   ,                (2.9) 

which one has to solve for an arbitrary “acceptable” excitation M . There are several ways 
of achieving that, such as through the use of auxiliary potentials A  and F  [53], z-directed 
fields [54], mixed potentials[55], Hertz potentials [56], Sommerfeld potentials [57], Debye 
potentials [58], and dyadic field Green’s functions [59]. All of these methods rely on the 
linearity of (2.9), which allows one to define a Green’s function [60] for the problem in 
question. These methods are well-known and a vast body of literature exists, dealing with 
them in detail, so a meticulous exposition might be inappropriate here. However, all of these 
methods are intimately related, and an understanding of one allows better understanding 
of the other. Therefore, we will review and compare them to each other in order to have a 
clearer picture of their relations, as well as respective pros and cons. 

 

2.2.1.1 From Currents to Fields – Auxiliary Potentials 

 There are essentially two analytic approaches to tackling inhomogeneous 
Helmholtz equations – a direct path, relying on one’s ability to derive a direct vector field 
solution satisfying the imposed boundary conditions, either using vector modal expansions 
directly, or using sets of vector modes to construct the dyadic field Green’s function of the 
problem, i.e. operators connecting the sources and fields directly, and obtain the solution by 
convolving the driving source term with it. Then there is the indirect path, based on 
auxiliary vector quantities known as auxiliary potentials which are related to EM fields by 
simple differential operators.  For the moment we shall focus only on the auxiliary 
potentials method, since it will serve as a starting point for the dyadic Green’s function 
method, which will be explained in much detail in the following sections. Moreover, in order 
to give a fair comparison of these methods, we will restrict ourselves to conditions assumed 
in the analysis of SIW devices – only magnetic currents serve as driving terms, and we are 
interested solely in the H-field. Hence, we focus primarily on  solving (2.9).  

 We take as our first example the /A F potentials method. This particular method 
rests on two observations. The first one is that in the absence of electric charges, as is our 
case, the electric field is divergenceless (we prefer this term over solenoidal), i.e. 

           0 E r    ,                     (2.10) 

implying that E may be constructed as a curl of some other vector function, i.e. 

                    E r F r   .    (2.11) 

Then, from the H-field curl Maxwell equation follows the result 

            0j  H r F r ,   

or 

            mj  H r F r r  ,                (2.12) 
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where  m r  is an arbitrary scalar function of position. (2.12) follows from the fact that any 

vector function obtained as the gradient of a proper scalar function is irrotational. Plugging 
(2.11) and (2.12) into the E-field curl Maxwell equation (2.7), one obtains the differential 
equation in F :    

        2

mk j     F r M r r  . (2.13) 

Unfortunately, this equation has an even more complicated form than (2.9) due to the 
presence of the gradient of the arbitrary magnetic potential. However, we will use the 
important concept of gauge invariance here to arrive at a simpler equation. Firstly, we note 

that   2    and replace the double curl operator in (2.13) using this identity. 

Secondly, the Helmholtz theorem [58] states that a properly regular vector function 

bounded at infinity may be written as      A r D r . Since (2.11) holds, it follows 

that only the rotational part of F is fixed, whereas the irrotational part can be of our 
choosing, since it will not contribute to the electric field. Hence, we are free to fix the 
divergence of F  any which way seems the most convenient. Upon some reflection, it turns 

out that we can get rid of both the  grad div operator on the LHS and the gradient of the 

potential on the RHS if we stipulate 

                mj F r r  ,                 (2.14) 

 thereby simplifying (2.13) to 

               2 2k  F r M r  .       (2.15) 

The solution to this equation is expressed in a simpler way than that of (2.13) and is given 
by 

           G , ' ' d ' F r r r M r r ,     (2.16) 

 G , 'r r being the scalar Green’s function, which is the solution to the differential equation 

                         2 2 G , ' 'k     r r r r  ,   (2.17)     

subject to boundary conditions dictated by the E-field. Just as an illustration, the Green’s 
function in an unbounded homogeneous and isotropic medium will take the well-known 
form [56]      

  
'

G , '
4 '

jk
e



 




r r

r r
r r

  . (2.18) 

Now one can finally obtain the full solution for the H-field in terms of the auxiliary potential 
F as 

                          

          2

1
G , ' ' d ' G , ' ' d 'j

k


 
      

 
 H r r r M r r r r M r r  . (2.19) 

In sum, one needs to find the scalar Green’s function subject to proper boundary conditions, 
inherited from the vector potential F , which is then used as the kernel in the integral 
transforms above. Then, differentiation needs to be performed in order to obtain the second 
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term. This is performed as follows. First, we move the divergence inside the integral. Note 
that one should be careful at this point since a limiting procedure is necessary due to the 
scalar Green function’s singularity at  'r r [59]. Then, after a simple application of the 
chain derivative rule, along with recognizing that ' when acting on the Green’s 

function (as it is a function of  'r r ), and on applying Green’s first identity [58] to move 

the divergence from the Green’s function onto the current, one obtains 

                       2

1
G , ' ' d ' G , ' ' ' d 'j

k


 
        

 
 H r r r M r r r r M r r    

which, upon recalling that    ' ' 'mj   M r r , finally becomes 

               2

1
G , ' ' d ' G , ' ' d 'mj j

k
  

 
      

 
 H r r r M r r r r r r  .          (2.20) 

This is the standard radiation integral, its interpretation being that the total field consists of 
two contributions - the first due to currents, while the second one due to static charges.  

The A / F  potential method may be convenient in a multitude of problems, and it serves as 
the starting point of other potentials-based methods.  

Hertz-Debye potentials method is one of them. It rests on the idea defining two vector 
potentials, pointed in a “preferred” direction, preferred usually meaning “in the 
stratification direction”. If one defines 

      
   

   

ˆ

ˆ

a

a

A

F





A r a r

F r a r
  ,   (2.21) 

it is possible to decompose the fields into TM and TE components with respect to â  in a 
simple and straightforward way, if one adopts the definitions 

                    
   

   

 

 

F

A

E r F r

H r A r
     .   (2.22) 

It can be easily seen that these respective fields will be transverse to â , hence representing 
TEa and TMa fields (or sometimes hybrid modes), respectively. Moreover, the fields defined 
in this manner, being solutions to the homogeneous Helmholtz equation, may serve in the 
construction of dyadic Green’s functions, as will be shown in the following subsection.  
   

 Depending on the problem at hand, one potential will do better than the other. The 
greatest power offered by the potentials approach is the degree of freedom inherent in their 
definition, allowing one to simplify their respective differential equations, which are, in 
general, easier to solve than the field vector Helmholtz equations. Moreover, they allow 
construction of fields in a fairly straightforward way. Coupled with the spectral domain 
approach [61], the potentials method becomes a powerful and versatile method capable of 
accounting for a plethora of problems, ranging from closed resonating devices to open, 
multilayered structures.  

 

2.2.1.2 Dyadic Green’s Functions 

 As mentioned in the previous subsection, dyadic Green’s functions provide a direct 
way to relate currents to their fields. Though more compact in form than the auxiliary 



Modélisation électromagnétique rapide de structures SIW par équations intégrales 

Josip Seljan - July 2016 

 

28 Hybrid mode-matching/ MoM for siw devices 

potentials method, they accomplish the same end. Moreover, as will be shown, dyadic 
Green’s functions are commonly derived from vector potential functions, constructible from 
suitable scalar potentials.  

 The method we adhere to is based on what we will refer to as the Schwinger-
Marcuvitz-Felsen formalism (abbreviated as SMF from here on) [62], [63] , [64], based on 
the use of dyadic Green’s functions and will be the topic of this subsection. However, first 
we will focus on the general derivation and exposition of dyadic Green’s functions, turning 
to the SMF formalism once we will have presented the alternative formalisms in sufficient 
detail.  

 We begin by noting that, since the equation (2.9) is linear, we can expect that its 
solution may be written as a linear superposition of some elementary contributions. What 
we mean by elementary is this – any source distribution may be thought of as a 
superposition of point sources, represented by the Dirac delta function,  defined by 

                           ' ' 'f d f   r r r r r   .                         (2.23) 

Generalizing this so-called sifting property of the delta function to vector functions and 
applying it to our case, we can write the magnetic current in (2.9) as 

                                    ' ' 'd  M r M r r r r  .                              (2.24) 

Applying a similar superposition principle, we assume an arbitrary H-field can be written as 
a linear functional, or more precisely, an integral of elementary current contributions as 

                   HM1
, ' ' d '

j
 

 H r G r r M r r  ,   (2.25) 

where we have introduced a linear operator of rank 2 (a dyad, or tensor of rank 2) HMG  , 

which we will refer to as the magnetic field dyadic Green’s function [52]. In essence, we 
stipulated that the field H  is a general linear mapping of the current M , the mapping being 

an integral transform with HMG  as the pertinent kernel. (The existence of such a mapping 

is guaranteed by the Riesz representation theorem [65]. ) A more palpable, “physical” 

interpretation of HMG is obtained if one takes a point dipole    ˆ' ' M r a r r   as the 

source in (2.25), â being an arbitrary unit vector. Then the integration becomes a simple 
multiplication: 

                            HM ˆ, 'j  H r G r r a  , 

and with HMG being defined a dyad (tensor), it represents the magnetic field of a point dipole 

of moment 1/ j , each of its components bearing form  G ,iji jx r r' x ,  representing the 

ix component of the magnetic field excited by an jx -oriented  point dipole of moment 

1/ j , the scalar function  G ,ij r r' playing the role of the field propagator. 

 Now, let us return to the derivation. Plugging (2.24) and (2.25) into (2.9), we obtain 

                                       2 HM , ' ' d ' ' ' d 'k      G r r M r r M r r r r   , (2.26) 

which we can transform further upon noting that we can move the vector Helmholtz 
operator inside the field integral, provided the integral obtained so converges uniformly 
[66].   
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 This is true for all observation points except ones determined by 'r r , i.e. source 
points. In this case, the field integral diverges because  the Green’s function does, which we 
know to be true without knowing its form explicitly since: a) any “physical” function 
describing interaction between sources of finite energy is exclusively a function of the 
space-time distance between them, b) any such function has to vanish or at least be bounded 
at infinity. Since sufficiently close to 'r , each component of the Green’s dyad behaves to 

dominant order as the free-space scalar Green’s function (in 3 ) (2.18), it is implied c) that 

it has to fall of at least as '


r r , 1   . This can be seen if one recalls that a Green’s 

function subject to general boundary conditions can be written, owing to the linearity of the 
Helmholtz equation and the validity of Green’s theorem, as the sum of the direct 
contribution – the free space one, and the secondary – the waves reflected at boundaries. 
Then it follows that any Green’s function’s singularity will essentially be dominated by the 
singularities of the free space Green’s function and its derivatives [67]. Finally, one 
concludes that the Green’s dyadic possesses a singularity at 'r r . Hence, a problem is 
encountered when evaluating a field at this point, motivating one to exclude this special 
point in some fashion. This is the well-known problem of the singularity of Green’s 
functions and has been researched extensively (see e.g. [68], [69], [70]). A way to mitigate 
this problem relies on a lemma on improper integrals, stating that an integral of a function 

containing a singular point 
0r  

      d
V

I f  r r   

  converges, or exists, if the limit  

      
0

lim d
V v

f




 r r                                                           (2.27) 

exists, v  being a variable region subject to the sole restriction that it must have 
0r   in its 

interior, and that its maximum dimension does not exceed   [68, p. 147]. In essence, one 
surrounds the singular point by a small volume, thereby excluding this point from the 
problem, but letting the maximum size of the volume approach zero. If the limit exists, the 
quantity defined by the integral exists, which in our case is the field.  

This particular procedure applied to our case will be dealt with in detail later on, since it 
would obscure the present discussion, and we defer it to after we will have derived the basic 
equations and identities involving the dyadic Green’s function, giving us better insight into 
the specifics of the problem. For the moment, we shall assume that our Green’s function can 
be regularized, rendering the LHS integral (2.26) uniformly convergent which, ultimately, 
allows us to interchange the integration and the Helmholtz operator.  

Having established the restrictions on the interchange of integral and differential operators, 
we move the operator inside the integral, obtaining 

           2 HM , ' ' d ' ' ' d 'k       G r r M r r 1 r r M r r , (2.28) 

where 1  is the unit dyad having the property  1A A1 A , A being an arbitrary dyad or 

vector. Comparing the LHS with the RHS, we note that in order for the equality to hold, the 
following differential operator equation must hold 

                                                             2 HM , ' 'k   G r r 1 r r  ,   (2.29) 

subject to the same boundary conditions as the magnetic field itself 



Modélisation électromagnétique rapide de structures SIW par équations intégrales 

Josip Seljan - July 2016 

 

30 Hybrid mode-matching/ MoM for siw devices 

         
  

    

HM

HM HM

ˆ , ' 0,

ˆlim , ' , ' 0

PEC

tjk





    

    

n G r r r

G r r ρ G r r
 ,                (2.30) 

where n̂ is the PEC surface normal S  of the PPW region, and 
tk is the transverse 

wavenumber. The former condition demands that the tangential electric field produced by 
a magnetic current is zero at PEC plates, while the latter, known as the Sommerfeld radiation 
condition [57], dictates that the energy transfer is directed towards infinity and the fields 

fall off faster than 1/2  ,  guaranteeing uniqueness of solution. Note that we have used the 

delta function symmetry property    ' '   r r r r to bring (2.29) into a more familiar 

form. Moreover, because the RHS of (2.29) has this property, the LHS must have that same 
property as well. To be more precise, since the RHS is a symmetric operator under the 
prescribed boundary condition (2.30), the LHS is as well, hence reciprocity under the 

transformation 'r r   of HMG  follows. 

 In sum, we have simplified the field problem given by (2.9) to finding the dyadic 
Green’s function as the solution to (2.29), and performing the integration (2.25).  

 There are several methods available to systematically solve (2.29), of which the 
most widespread is the Ohm-Rayleigh method [71], [72]. Its central idea is to use a dyadic 
analogue to the classical solution of scalar Green’s function by eigenfunction-expansion. 
Basically, one introduces complete sets of vector wave functions, which are defined as 
eigenfunction solutions of the homogeneous vector Helmholtz equations 

                 2 0  D r D r  ,    (2.31) 

  being an arbitrary parameter for now. The solutions of (2.31) can be generated from 
solutions of the scalar Helmholtz equation 

        
'

2 2

"
0





  r  ,                 (2.32) 

satisfying Neumann or Dirichlet boundary conditions at the problem boundary surface S , 

 ' 0n r  and  '' 0 r , respectively. If one defines a so-called pilot vector â , and 

constructs the following functions                  

                                       

       

       

' ' ' '

'' '' '' ''

1
ˆ ˆ;

1
ˆ ˆ;

 


 


  

  

M r a r N r a r

M r a r N r a r

        ,           (2.33) 

one has effectively constructed a divergenceless TM/TE vector basis, the interpretation of 
these function being the following – the primed functions correspond to, respectively, the 
magnetic and electric TM field, whereas the doubly-primed functions correspond to the 
magnetic and the electric TE field. Note that these functions are actually nothing more than 
the fields obtained from Hertz-Debye potentials, mentioned in the previous subsection. 
These forms are valid in regions containing no more than a single, isotropic medium. If one 
wishes to deal with fields in multilayered, anisotropic regions, the definitions (2.33) have to 
be modified. This modification will be shown explicitly in one of the following sections. 

Furthermore, the intention of introduction the 
1


 factor in the definition of N  functions 
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was solely to obtain symmetrical auxiliary relations between M  and N functions 
obtainable from (2.31).  

In addition to the divergenceless vector functions, one needs to specify irrotational vector 
wave functions as well. The reason for this is that one must be able to represent the static 
fields as well. For this purpose, the following functions are introduced: 

      
 

 

 

 

' '

0

'' "

0





   
       

   

L r r

L r r
  ,   (2.34) 

where '/ ''

0 is the solution to the Laplace equation 

           
 

 

'

02

''

0

0



 

r

r
,     (2.35)

satisfying '

0 0n  , ''

0 0  . Now, if the sets   and  0  are complete and orthogonal 

(the TM/TE superscripts are omitted for the sake of compactness), one can construct vector 
bases orthonormal under the scalar product 

                  , *d f g f r g r r  ,   (2.36) 

the asterisk denoting the complex conjugate. These bases are not only capable of 
representing an arbitrary vector function, but a dyadic one as well. In other words, there 
exist dyadic completeness relations 

         

       

       

' '' '

'' ' ''

'

'
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m
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m





      

      





a M r b N r c L r 1 r r

d M r e N r f L r 1 r r
   , (2.37) 

  indicating the dyadic product (more commonly known as the outer product), m  
indexing the terms of the series (the sum is to be interpreted as a general 
summation/integral operator). The reason why there are two such relations is quite simple 
- there are two kinds of fields – the magnetic and the electric one, satisfying different 
boundary conditions. Therefore, one needs two sets of functions to describe them – one for 
each. The first relation is related to the expansion of magnetic fields, the second one to 

electric fields. Performing scalar products with 
mM , 

mN and
mL  eigenfunctions, one 

obtains the completeness relations 
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

      

      





M r M r N r N r L r L r 1 r r

M r M r N r N r L r L r 1 r r
 .         

(2.38) 

These relations serve as starting points in solving dyadic Green’s function differential 
equations. In order to solve (2.29), we use the first one, relevant to the magnetic field.  

Expanding the RHS of (2.29) using (2.37) and the RHS in a similar fashion, we obtain  
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       

     

2 ' '' '

' '' '
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m

k      

     





g M r h N r i L r

a M r b N r c L r
.       

           (2.39) 

This, in general, is an infinite linear system. If we recall that functions belonging to different 
bases are linearly independent, then the implication is that we have to match the coefficients 
of each m -th pair of dyadic functions, one on the LHS, one on the RHS. Moreover, 
interchanging the summation with the Helmholtz operator, and recalling that the unknown 
expansion coefficients do not depend on r , we obtain 
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M ra
g
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h
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i

   .    (2.40) 

At this point, the role of the parameter  should be clarified. One may ask  why we did not 
demand (2.31) to satisfy the same equation with k . The reason is the following – if we had, 

the expansion coefficients (2.40) would have been undefined due to resonance, i.e. 2 2k   
rendering the coefficients infinite and the expansion non-unique. In order to have a well-
defined and unique Green’s function, this parameter  can be chosen arbitrarily, but must 

be such that 2 2k  . More concisely,   is a free parameter of the spectral expansion, and 
by means of analytic continuation [60, pp. 392–398] it can be shown that the expansion 

remains valid even when 2 2k   . Further manipulations leading to more useful forms 
depend upon the specific geometry of the problem. However, the result will not depend on 
this parameter, and a singular term can always be extracted, which corresponds to the well-
known source correction term.  

The advantage of this method lies in its simplicity and conceptual familiarity. The drawback 
is tediousness and rather involved and often abstruse extraction of discontinuous terms, 
which needs to be done when an MoM procedure is used, since accurate evaluation of 
diagonal elements of MoM  matrices relies on it . It is for this reason we had decided to 
adhere to an alternative procedure, lacking these debilitating features.  

2.2.1.3 Schwinger-Marcuvitz-Felsen Formalism 

 The Schwinger-Marcuvitz-Felsen formalism, which we adopted as our method of 
choice to derive dyadic Green’s functions, goes all the way back to WWII to the seminal work 
done at the MIT Rad lab by Julian Schwinger, and was, historically, the first approach to 
deriving dyadic Green’s functions. In fact, Morse and Feshbach’s famous treatise on Green’s 
functions [60, Ch. 7] is heavily influenced by Schwinger’s work, which established the 
concept of the dyadic Green’s function (then refered to as the tensor Green’s function). 
Consequent works of Marcuvitz [73], Marcuvitz and Schwinger [63] and Felsen [74] have 
extended and reformulated Schwinger’s work, phrasing it in terms of transmission-line 
terminology. The whole process relies on the scalarization of the problem, where one first 
decomposes the complicated dyadic operator defining the Green’s function into simpler 
ones enabling the decomposition of the field into TE and TM contributions, derivable from 
two scalar potentials. Moreover, such a decomposition explicitly isolates the discontinuous 
terms, which will prove to be crucial in the MoM procedure. 
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We begin as in [75], by using the identity   2    to rewrite the operator 

differential equation (2.29) as 

             2 2 HM , ' 'k      G r r 1 r r  .                             (2.41) 

Then, we note that the LHS of the expression above contains a divergence of HMG , which 

can be obtained by operating with the divergence  on (2.29), yielding 

     2

1
'

k
    HMG r r  .    (2.42) 

Using this result in (2.41), one obtains, after a simple rearrangement of terms: 

           2 2 HM

2
, ' 'k

k


 
      

 
G r r 1 r r  .  (2.43) 

Then the general form of the Green’s dyadic, using the language of operator calculus [76] is: 

        
1

HM 2 2

2
, ' 'k

k


  
      

 
G r r 1 r r  ,   (2.44)

 
1

2 2k


   being the inverse of the scalar Helmholtz operator which, under general 

boundary conditions, induces two scalar potential functions necessary to construct the 
complete EM field.  

In the case of an unbounded, homogeneous medium, it is easily seen that HMG is of the form 

                                  HM

2
G , ' G , '

k

 
  
 

r r 1 r r   ,                                (2.45)

with the scalar function  , 'g r r  satisfying the differential equation 

         2 2 G , ' 'k     r r r r  ,                (2.46) 

subject to the Sommerfeld radiation condition. 

 Hence, the problem has been translated to finding scalar functions satisfying 

                     
1

2 2G , ' 'k 


    r r r r  ,   (2.47)

and applying the dyadic operator 
2k


1 (which we will denote as T  from now on). But, 

recalling the /A F  potential derivation of the magnetic field where we had obtained the 
radiation integral (2.19),  (which we repeat here for convenience)  

           2

1
G , ' ' d ' G , ' ' d ' ,j

k


 
       

 
 H r r r M r r r r M r r  

we note that we could have arrived at (2.45) by “extracting” this operator directly from the 
radiation integral. Also, by comparison, one notes that (2.46) is, in fact, the F potential 
scalar Green’s function defined by (2.15).   

Hence, conceptually, the dyadic Green’s function is nothing more than an auxiliary operator 
useful for formulating the radiation integral in a compact way. This general form, though 
elegant, does not provide any insight into the problem at hand, of course. However, it gives 
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better insight into the singularity problem, which we discussed a while ago and to which we 
now turn our attention fully.  

As previously discussed, the radiation integral (2.25) becomes ill-defined when 'r r , 
since the Green’s function becomes singular there. Not only does it possess the free-space 

1
'


r r  singularity, but higher-order ones as well, owing up to the presence of  spatial 

derivatives in T , rendering the radiation integral non-uniformly convergent. Hence, one 

has to redefine the field integral in an improper sense, which may be done as follows. First, 
note that the twofold application of divergence under the integral sign results in a term of 

order  3
'O


r r . Outside the source region, this creates no problems, as the integral is 

uniformly convergent. Therefore, one can exchange the order of integration and 
differentiation to her/his liking without affecting the result. However, in the source region, 
this term gives rise to a non-integrable singularity [77, p. 28]. Then our only chance of 
defining a convergent integral is if we can somehow lower the order of the singularity. This 
can be done if we bring the spatial derivatives outside the integral and define the field as an 

improper integral. For this purpose imagine two surfaces S and S (Figure 2.4), S  

enclosing the problem region V , with general impedance boundary conditions specified on 

it, S  being an arbitrary surface of maximum chord   enclosing the singular point 'r , 

subtending the volume V  .  Now we can redefine the second term of the field integral (2.25) 

as [59, p. 379] 
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(2.48)  

 

Figure 2.4 The principal volume geometry 
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where we have exchanged the order of differentiation and integration in the first RHS term 

because the volume V V  does not contain the singular point 'r , therefore converging 

unconditionally, albeit to a value dependent on the shape of the exclusion volume V . In the 

second integral, we have moved only one spatial derivative inside the integral. The reason 
is that a single spatial derivative acting on the Green’s function increases the integrand’s  

singularity order to  2
'O


r r , still making it weakly singular and, therefore, integrable, 

which would not have been the case had we moved both derivatives inside the integral. It is 
important to note that the values of integrals on the RHS are both dependent on the shape 
of the exclusion volume. However, they add up to a unique value, corresponding to the 
quantity on the LHS. Moreover, using Green’s theorem (partial integration), one can show 
that the second RHS term reduces to 

  

           

       
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V S V

m

S V

d S

S j
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    

  

 

r r M r r r r M r n r r M r r

r r M r n r r r r
 ,  

           (2.49) 

where we have used the charge continuity equation to rewrite the second integral. Since the 

charge 
m  is continuous, and the volume of V  is proportional to 

3
'r r , it follows then 

that the second term of (2.49) vanishes. The first term, on the other hand, is the field in V  

due to charge   ˆ' dSM r n  built up on the surface S , and is electrostatic in nature. Hence, 

it satisfies the Laplace equation, which is scale invariant, i.e. the field will not vanish even in 
the limit 0  . Since in this limit this term must be linearly proportional to the current 

 'M r , (2.48) can be written as 

               
0

G , ' ' d ' lim G , ' ' d ' '
V V V




     r r M r r r r M r r L M r ,         (2.50)

where L is the so-called depolarizing dyad, dependent on the shape of the exclusion volume. 

It has been calculated for a number of shapes of exclusion volumes, see for example [66]. 

Finally, using these results, one can write down the expression for the field, valid even inside 
the source region as  

                                         
 HM

20

'
lim , ' ' d '

V V
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k
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
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  
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  


L M r
H r G r r M r r    

or, more concisely 

             
 HM

2

'
, ' ' d '

V

j
k


  

     
  


L M r

H r G r r M r rP.V.  ,        (2.51)

where P.V. denotes the principal value integral in the Cauchy sense. The intuitive 
interpretation of this integral is the following - when one observes the field in the source 
region, it is necessary to isolate the singularity by enclosing it in an artificial small volume. 
This “causes” charge to build up on its surface, which in turn creates an electrostatic field 
depending on the shape of the volume that does not vanish even in the limit of vanishing 
volume. Since we have thusly introduced a spurious field which was not there before we 
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had placed this volume, we have to kill it off to produce the correct field, and this is exactly 
what the depolarizing term does!  

This procedure has been investigated thoroughly by a large number of authors, and has 
sparked quite a lot of controversy. It has been argued mostly on physical grounds (with the 
depolarization interpretation). However, it is very interesting to note that the whole 
procedure is simply an application of the very important and celebrated theorem of 

Sokhotski-Plemelj [78, p. 113] to vector fields over 3 ! It is even more interesting to note 
that, to the best of author’s knowledge, no seminal paper or textbook on this topic even 
mentions the theorem! 

To make the field integral (2.51) even more concise, we can include the depolarizing term 
into the definition of the Green’s function 

                       HM HM

2
, ' , ' '

k
   

L
G r r G r r r rP.V.  ,   (2.52)

where we have stipulated that whenever this operator is used, it should be used within the 
principal value framework.  

Now that we have properly defined the dyadic Green’s function, we are finally ready to 
tackle the problem at hand – the field of magnetic current sources radiating inside parallel 
plate waveguides. This will be the topic of the next subsection. 

 

2.2.1.4 Dyadic Magnetic Green’s Function for a Parallel Plate Waveguide 

 After a rather lengthy general discussion on Green’s functions, we return to our 
original problem – given some impressed magentic sources in a parallel plate waveguide of 
height h , what is total magnetic field at an arbitrary point inside it? The answer was given 
in the previous subsection – we can find the magnetic field using the radiation integral 
(2.25) upon finding the pertinent Green’s dyadic. Whereas in the previous section we had 
found the general form of the Green’s dyadic, now we have to find it for the particular case 
of a parallel plate waveguide (referred to from now on as PPW).  

Referring back to Figure 2.3, which shows a PPW defined as follows - its bottom PEC plate 

is lying in the 0z   plane, and the unit normal pointing in the z - direction, i.e. ˆ ˆn z , while 

the top plate lies in the z h plane, an isotropic, homogeneous dielectric medium of 

permittivity 
r  filling the space between plates. The structure is driven by an arbitrary 

magnetic current source of finite power. Our task is then clear – we must solve the operator 
differential equation (2.29), subject to boundary conditions 

   
    

    

HM

HM HM

ˆ , ' 0, 0,

ˆlim , ' , ' 0t
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jk





    

    

n G r r

G r r ρ G r r
.     (2.53)

The meaning of the first condition is obvious – the tangential electric field created by a 
magnetic source must be zero at the PEC boundaries – bottom and top metal plates. The 
second one should be clear as well – the energy transfer should be towards infinity, i.e. in 
the transverse direction since the structure is bounded in z , i.e. the electromagnetic field 
should asymptotically behave as an outgoing cylindrical wave at infinity; in addition, the 
sources, in the words of Sommerfeld, “must be sources, not sinks of energy” [57, p. 189]. If 
one were to permit the addition of ingoing waves to the solution, its uniqueness would be 
rendered moot. Consequently, it would be of no use whatsoever. Now, we know the very 
general form of the Green’s dyadic (2.45), from which we can clearly see that we must first 
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obtain the scalar Green’s functions in order to derive it. Though such a form is convenient 
for the evaluation of the free-space Green’s dyadic, where a scalar Green’s function is easily 
obtained, it is not the case where planarly stratified media are present and the problem 
regions are closed by PEC boundaries. In such cases, it may be more convenient to use a 
representation in the basis along the stratification direction [64, Sec. 1.4], derivable by 
operator calculus tools. It allows the decomposition of fields into TE and TM contributions 
with respect to the stratification direction, simplifying the problem to finding two scalar 
potentials. This is the approach we adopt and here we will take a moment to flesh out its 
essential ideas.  

We begin with an attempt to decompose the dyadic operator T  into transverse and 

longitudinal components, longitudinal meaning “in the stratification direction”, i.e. in ẑ  
direction. For this purpose, we introduce the transverse nabla operator defined as 

ˆ
t z  z . First we decompose the unit dyad, our starting point being the 2-D 

(transverse) version of the identity 2 1 1: 

               2ˆ ˆ
t t t t     z z 1  ,  (2.54) 

from which follows 

                 2 2ˆ ˆ ˆ ˆ
t t t t        1 z z z z  ,  (2.55) 

and, finally:  

                  
   

2 2

ˆ ˆ
ˆ ˆ t t

t t

   
   

 

z z
1 z z   .               (2.56)

The inverse of the transverse Laplacian 2

t  is defined as 2 2 2 2

t t t t

     1 , and its explicit 

representation depends on the basis the functions it acts on are defined in.  Now we have to 
decompose the   operator, which we can do using identities 

     2ˆ ˆ ˆ ˆ
t t t t z z          z z z z   ,   (2.57) 

and 

 

        2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ
t t z t t z t t t                  z z z z z z   .    

           (2.58) 

On multiplying (2.57) with 2

t  and adding it to (2.58), one obtains  

       2 2 2ˆ ˆ ˆ ˆ
t t t t          z z z z  , (2.59) 

and, upon “normalization” with  2

t ,  

     
   2

2 2

ˆ ˆ
ˆ ˆ t t

t t

    
      

  

z z
z z   .   (2.60) 

Summing (2.56) and (2.60), we reexpress the T operator as     
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T 1 z z

z z z z
 (2.61) 

Then, plugging (2.61) into (2.44), and applying  boundary conditions (2.53), we deduce that 
in order for (2.44) to be a valid solution to (2.29),  we need two scalar Green’s functions, 

which we denote as 'G  and ''G , satisfying '

0,h
G 0n z

   and ''

0,h
G 0

z
 . The introduction 

of these functions is possible due to the fact that the operator    
1

2 2 'k 


   r r  has a 

“duplicity”, i.e. one can construct it in two bases, each of the vectors spanning the bases 
satisfying either Dirichlet or Neumann boundary conditions, providing this degree of 
freedom. Therefore, the full form of the Green’s dyadic is: 

   

   
 

   
 

HM

2 2

' ''

2 2 2

1
ˆ ˆ, ' '

ˆ ˆ ˆ ˆ' ' '1
G , ' G , ' ,

t t

t

t t

k

k


  

     
 

        
  

 

G r r z z r r

z z z z
r r r r

    

           (2.62) 

(note that we used ' ) which , on introducing auxiliary potentials  

                             
 

2

G , '
, '

t




r r
r rS ,      (2.63)

subject to '

0,h
0n z

 S  and ''

0,h
0

z
S  (inherited from scalar Green’s functions), 

becomes 

   

           

HM
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' ''
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  

     
 

          

G r r z z r r

z z r r z z r rS S

.

           (2.64)
This form is valid in homogeneous, isotropic media, posssibly closed by PEC boundaries, 
being our present case. Later we shall show how to obtain the Green’s dyadic for 
inhomogeneous media, specializing it to the case of planar-stratified, piecewise-constant 
media. 

Two remarkable facts about representation (2.64) should be noted – the delta term, taking 
into account the discontinuities of the Green’s dyadic, naturally comes out of the inverse 
operator formalism. The longitudinal part corresponds to the depolarizing dyad obtained 
for a pillbox-shaped principal volume, as obtained in [66]. The transverse part, on the other 
hand, regularizes the Green’s dyadic further, cancelling the spurious delta term coming from 

the differentiation of ''S , as will be shown later on. Hence, this explicit decomposition has 
an upper hand with respect to other Green’s dyadic representations, where this spurious 
transverse term is “hidden” and may be easily overlooked (see [79]).  

To sum it all up, this representation allows one to scalarize the problem – one needs to find 
scalar Green’s functions (2.63) which, upon applying pertinent dyadic differential operators 
on them, yield the Green’s dyadic. These functions may be obtained in a multitude of ways, 
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but we opt for the transmission-line approach of Felsen and Marcuvitz, since it is the most 
intuitive, familiar and physical. Here we will present only its essentials necessary to derive 
the aforementioned scalar Green’s functions, deferring the details to appendices as 
necessary, and referring the interested reader to [64, Ch. 2] 

2.2.1.5 Transmission-line Rephrasing of the Problem  

 The transmission line formalism [80], championed in the microwave community for 
decades, rests on a simple premise – there is a “dominant” direction of energy transfer or 
change of geometrical and material parameters, as in closed microwave devices, so in the 
open antenna problems. From a mathematical perspective, the transmission-line formalism 
is nothing more than a prescribed set of recipes for solving ordinary differential equations, 
which are obtained from wave equations when coordinate separability of solutions applies, 
and phrased in terms of physical concepts. Since the guide cross-section does not usually 
vary, a modal representation is often possible to describe the functional dependence over 
the cross-section, whereas the longitudinal dependence problem may be advantegously 
formulated in terms of transmission-line concepts. In conjuction with the method of 
characteristic Green’s functions [81], [73], it becomes a powerful framework for 
construction of solutions in the presence of sources. We note here that we try to adhere to 
Felsen’s notation as best as possible all throughout this and the following subsections.  

Our problem setup is as follows – a PPW can be considered as a cylindrical region of infinite 

extent in the transverse direction, closed by PEC boundaries at coordinates 
1 2,z z z , as 

shown in the following figure.  

We begin the derivation by explicitly separating the transverse and longitudinal field 

dependence, effected by firstly reexpressing the curl Maxwell equations using ˆ
t z   z  

and 
t z E E E , and then by scalarly pre-multiplying  and post-cross-multiplying  them by 

ẑ , yielding: 
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E z

H z

E H z M z

H E z J z

                (2.65) 

Figure 2.5  Transversely unbounded, vertically parallel-plate bounded region 
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Then, one notes that z -components can be eliminated from the latter two equations, 
reexpressing them in terms of transverse ones using the first two equations: 

    

 

 

2

2

ˆ ˆ

ˆ ˆ

t t
z t t t

t t
z t t t

j
k

j
k





  
       

 

  
       

 

E 1 H z M z

H 1 z E z J

                 (2.66) 

Hence, we can focus solely on transverse components, longitudinal ones being obtainable 
from the first pair of equations (2.65). A further simplification, in the form of separation of 
cross-sectional and longitudinal dependence of transverse fields, can be accomplished by 

introducing sets of suit able orthogonal vector eigenfunctions of the operator 
t t , which 

satisfy proper boundary conditions on the sidewall. They are defined as  

                       

 
 

   

     

     

     

' ' '

'

' 2 ' '

2 ' 2 '

2 ' 2 '

ˆ
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0 , 0 0 ,

0 , 0 0 ,

t i

i i i

ti

t t ti i t t i

t ti i i ti

t ti i i ti

k

k

k S if k

k S if k



 

 

 
     

        

            

           

ρ
e ρ h ρ z e ρ

e ρ h ρ

ρ ρ ρ

ρ ρ ρ

  (2.67) 

where from the first pair of equations  (2.65) it is obvious that functions defined so will not 
contribute a magnetic field z -component ; hence they belong to the TMz set. Moreover, 
these functions satisfy the following orthonormality relations 

                                              ' ' ' 'd ; di j ij i j ijS S       e ρ e ρ h ρ h ρ  ,                 (2.68) 

where the latter follows from the first one along with the rotational invariance of the scalar 
product.  In addition, as a consequence of (2.68), the following power normalization holds 
for the entire set: 

                                                               ' ' ˆ di j ijS    e ρ h ρ z  .                 (2.69) 

Analogously, one defines sets  
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     

        

        

ρ
h ρ e ρ h ρ z

h ρ e ρ

ρ ρ ρ

   (2.70) 

which correspond to TEz fields and satisfy analogous orthonormality relations. Then, it is 
possible to reexpress the transverse fields as 

   

       

       

' ' '' ''

' ' '' ''

,

,

t i i i i

i i

t i i i i

i i

V z V z

I z I z

  

  

 

 

E e ρ e ρ

H h ρ h ρ
    (2.71) 

the z  -dependent modal voltages and currents being obtainable by a simple projection 
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                                                            * di t iA z S  B r c ρ  ,       (2.72)

iA  being the modal quantity of interest (superscripts denoting the TM or TE set have been 

dropped for the sake of clarity), 
tB the transverse field or current of interest and *

ic the 

complex-conjugate (or more generally, adjoint) vector eigenfunction. If there are no 
discontinuities in the guide and it is of uniform cross-section, inserting the expansion (2.71) 
into (2.66) yields an infinite system of ordinary differential equations: 

                                                  ,z i i i i i z i i i i id V j Z I v d I j YV i          ,  (2.73)  

which are recognized as transmission-line equations, expressed in a suggestive form 

enabling the identification of transmission-line quantities such as the modal voltage 
iV  and 

current 
iI , the propagation constant 

i and modal impedance and admittance, 
iZ  and  

iY , 

respectively, given by         

             
'

'/ '' 2 '/ '' ' '

''
, ,i

i ti i i

i

k k Z Z
 


 

          .   (2.74)

Now our task is to relate the modal voltages and currents with sources. The linearity of 
equations (2.73) allows us to conjecture 

    
         

         

, ' ' d ' , ' ' d ' ,

, ' ' ' , ' ' ' ,
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I

V z Z z z i z z T z z v z z

I z T z z i z dz Y z z v z dz

   

   

 

 
    (2.75) 

where the integral kernels are readily interpreted as follows –  , 'Z z z is the voltage at z  

due to a unit current generator located at 'z ,  , 'VT z z  is the voltage at z  due to  a unit 

voltage generator at 'z , whereas  , 'IT z z  and  , 'Y z z are the corresponding currents 

due to the same excitations. The equations defining these quantities may be obtained by 

superposition – if one first considers the special excitations      ' 0 , ' 'i z v z z z       

in (2.75), and inserts the resulting voltages and currents into the transmission line 
equations, the following defining equations are obtained: 
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  
  (2.76) 

whereas the equations for dual quantities may be obtained upon imposing the excitations 

     ' ' , ' 0 :i z z z v z        

      
     
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 



     
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  (2.77) 

It should be stressed that the boundary conditions have not yet been stipulated, so these 
forms apply to general boundary conditions, and this formalism applies equally whether 
material parameters do or do not vary with z . In addition, it can be shown by classical 
methods that these functions satisfy the following useful reciprocity relations 
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     (2.78) 

Having established the basis for the transmission-line formalism, our task is now to apply it 
to derive the scalar Green’s functions. For this purpose, we have to express them in terms 
of transmission-line quantities. This is readily accomplished in the following manner – we 
interchange the summation and differentiation operators in the modal expansions (2.71), 
obtaining formally 
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                                 (2.79) 

where the scalar functions are defined as  
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   (2.80) 

which, in conjunction with (2.65), may be used to obtain the following field expressions 
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 (2.81) 

demonstrating  that only two scalar functions are needed to construct an arbitrary Maxwell 

field [53, Ch. 3] and, upon introducing substitutions    ' ' /I j r r  and 

   '' '' /I j r r , lead to the well-known Debye-Hertz potential field expressions [82, 

p. 32] 
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 (2.82) 

To connect the fields to sources in an explicit manner, we consider fields due to following 
point sources: 

       0 0' , '      J J r r Μ M r r   ,  (2.83) 

from which the modal source current and voltage amplitudes, necessary for the formulation 
of transmission-line problems  (2.76) and  (2.77) can be calculated as 
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       (2.84) 

If the modal source amplitudes are then inserted into (2.75), the following equations 
expressing the TM modal current and TE modal voltage are obtained, which on further 
simplification by using reciprocity relations (2.78) are given by 
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   (2.85) 

which, upon inserting (2.84) and exhibiting the vector transverse functions in full form as 
in (2.67) and (2.70), and then inserting into (2.80) finally yields 
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the S  potentials being 

            

 
   

 

 
   

 

' '

' 2

'' ''

'' 2

'
, ' , ' ,

'
, ' , '

i i

i

i ti

i i

i

i ti

j Y z z
k

j Z z z
k

 


 


 

 





ρ ρ
r r

ρ ρ
r r

S

S

                       (2.87) 

It should be noted that the expansions in (2.87) are valid only if 0tik  , whereas the TEM 

mode should be treated separately and added to the 'S expansion. Moreover, note that the 
summation and differentiation may not necessarily commute, as was implied in the 
derivation of (2.86). This behavior is usually the case when an integral representation of 
potentials is necessary, e.g. when the guide cross-section is unbounded, and impacts the 
definition of potentials and, consequently, fields, since one will have to keep the 
differentiation inside the spectral integrals to render them convergent, or explicitly isolate 
and discard the offending singularity.  

Now, using these results in (2.81) and adding the source-region delta terms, we arrive at 
exactly (2.64)! Here we then note that the modal transmission-line TM  current and TE 
voltage Green’s functions are related to longitudinal scalar modal Green’s functions as 

          ' ' '' ''1 1
, ' , ' , ' , 'zi i zi ig z z Y z z g z z Z z z

j j 
     .         (2.88) 

Though one may be surprised why we had chosen to take the round trip to the dyadic 
magnetic Green’s function expression by way of transmission-line formalism, when we had 
already obtained it by direct inverse operator formalism, it should be clear that by doing so 
we obtained explicit expressions from which one readily constructs the required scalar 
potentials. Moreover, the transmission-line phrasing provides a clear physical 
interpretation of quantities involved, favorable over the more abstract formalism and 
terminology of ordinary differential equations, since it makes the boundary conditions of 
scalar functions evident and provides a systematic way of field construction when stratified 
media are present.  

 To summarize, employing the transmission-line formalism, we reduced the problem 
of finding the scalar Green’s functions to finding sets of orthonormal scalar eigenfunctions 
in the cross-section coordinates, and scalar transmission-line Green’s functions in the 
longitudinal coordinates, which is the topic of the next subsection 
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2.2.1.6 Scalar Green’s functions  

 Though there are several approaches to deriving scalar Green’s functions, a 
particular one, chosen here, carries significant advantage with respect to alternative ones. 
The approach is the one of characteristic Green’s functions [81], championed by 
Marcuvitz and his followers. It offers a powerful and general framework for deriving Green’s 
functions and associated alternative representations in a straightforward way, along with 
the ability to derive normalized eigenfunctions in situations where the alternative 
frameworks do not make clear how to do so, particularly in open or semi-open problems 
when continuous spectrum is present. In this subsection we will lay out the basic theory 
behind this approach and apply it to derivation of required scalar Green’s functions.  

 Firstly, we repeat the problem at hand – given a cylindrical region of infinite 

transverse extent and bounded by infinite PEC planes at 
1 2,z z z , find two functions 'G 

and ''G , defined by 

              
'

2 2

"

G
, ' '

G
k     r r r r  , 

satisfying 'G 0z   and ''G 0 at 
1 2,z z z , Sommerfeld radiation conditions as   , 

and  ' r r  can be “factored” as    ' 'z z  ρ ρ .  Since we have shown that 

separability of transverse and longitudinal coordinate dependence applies in our case, we 
can introduce auxiliary Green’s functions satisfying the following inhomogeneous Sturm-
Liouville problems  

    
     

     

2

2

, '; ' ,

, '; '

t t t t

z z z z

g

d g z z z z

  

  

     

    

ρ ρ ρ ρ
                (2.89) 

where spectral parameters 
t and 

z  are yet unspecified, but satisfy 2

t zk    . These 

functions are then termed characteristic Green’s functions. Knowledge of these functions and 
their singularities allows one to construct the 3-D Green’s functions by appropriate contour 
integration, by virtue of the following theorem [82, Sec. 2.6] 

  

     

   

2

2

G , ' , '; , '; d
2

, '; , '; d ,
2

z

t

t z z z z

C

t t z t t t

C

j
g k g z z

j
g g z z k





  


   


  

   





r r ρ ρ

ρ ρ

                 (2.90) 

where C  is a positively oriented curve enclosing the singularities of just one of the 

characteristic Green’s functions in the respective spectral plane of choice, but no other. This 
relation is easily verified on insertion into the 3-D Green’s function’s defining equation and 
applying the residue theorem. Therefore, we are concerned with seeking the respective 
characteristic Green’s functions. First, we focus on the transverse one. Since both TM and 
TE Green’s functions obey the same boundary conditions at transverse infinity, they will 
necessarily be of the same form, easily expressed in closed form as [64, p. 447] 
  

          ' 21
, ';

4

jn

t t n t n t

n

g e J H
j

 
    


 

 



 ρ ρ  , (2.91) 
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where 
nJ  and  2

nH  are Bessel functions of order n , and Hankel functions of second kind 

and order n  respectively, where the latter represent outgoing cylindrical waves dying off 

at infinity, chosen so due to the particular choice of time-dependence ( j te   ); 

 / max / min , '        .  The particular form (2.91) can be reexpressed in a succinct way 

using the Gegenbauer addition theorem (see [83]) as 

        2

0

1
, '; '

4
t t tg H

j
  ρ ρ ρ ρ    .                (2.92) 

The longitudinal characteristic Green’s functions, on the other hand, are expressible in two 
equivalent forms, and we shall demonstrate both of them, since one or the other may be 
advantageous in a given situation. First, without reference to a specific boundary condition, 
a one-dimensional Green’s function may be constructed if one is in possession of a complete, 
orthonormal eigenfunction set, i.e. each function satisfying the Sturm-Liouville eigenvalue 

problem    2 0z zi id f z   [77, Ch. 5], along with the orthonormality condition 

         di i j j ijf z f z w z z     ,    (2.93) 

where  w z is the weight of the Sturm-Liouville problem and ij being the Kronecker delta, 

or a standard delta function if the problem region is open or semi-open. If one then assumes 
that the Green’s function can be expanded in terms of so-defined eigenfunctions, simple 
manipulations lead to the following well-known form 

    
   '

, ';
i zi i zi

z z

i z zi

f z f z
g z z

 


 
 


   .   (2.94) 

However, due to this function being divergent at 
z zi  , one might wonder if it represents 

a unique solution, and rightly so. Essentially, it will be a unique solution if the complex 

parameter 
z  is restricted as 

z zi  , since the contrary would imply the addition of a 

homogeneous solution to the Green’s function, any number of which can be added to it while 
still sastisfying the pertinent differential equation [82, Sec. 2.5]. Fortunately, one can still 
use this eigenfunction form while maintaining uniqueness of solution using analytic 
continuation as it applies to meromorphic functions (i.e. functions possessing simple poles) 
as well (which is our case), which enables us to show that uniqueness hold even in the limit 

z zi  . This, finally, enables us to apply the residue theorem (or branch cut integration 

in case of open or semi-open problems) in (2.90).  It is easily seen that this form of the 
characteristic Green’s function might be convenient if the problem region is closed, leading 
to a discrete spectrum and, consequently, straight-forward normalization of eigenfunctions. 
Otherwise, an alternative method may be used, convenient when normalization may not be 
so obvious or simple (especially when continuous spectrum is allowed by the problem), 
which relies on the construction of the Green’s function from linearly independent solutions 
of the homogeneous 1-D Sturm-Liouville equation (denoted as “SLE” from here on) 

            0z zd p z d q z w z z      ,   (2.95) 

 p z ,  q z and  w z depending on whether TM currents or TE voltages are considered. 

From the observation that the Green’s function must satisfy the homogeneous SLE for 
'z z , we note that 
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     
 

 

1

2

, '
, ';

, '

z

z z

z

A z z z
g z z

B z z z

 


 

   


 
  



 ,   (2.96) 

where the solutions 
1  and 

2  satisfy the proper boundary conditions at endpoints of the 

region. From the requirements of reciprocity, continuity at 'z  and the jump condition 
'

' 1
z

z z z
pd g 



  , obtained by integrating the inhomogeneous SLE around 'z , we obtain the 

following form of the characteristic Green’s function 

     
   

   

1 2

, '; ,
' '

z z

z z

z z
g z z

p z W z

   
  


   (2.97) 

 'W z  being the Wronskian determinant [82, p. 65] defined as  

        1 2 2 1' z zW z d d     .              (2.98) 

The product    ' 'p z W z can be shown to be independent of 'z , but depends on 
z   in such 

a way that (2.97) will have simple poles in the 
z plane coinciding with the poles of (2.94). 

It is remarkable that although the forms (2.97) and (2.94) are different, they are completely 
equivalent. This method of deriving the characteristic Green’s function is particularly 
powerful, since it enables one to easily find normalized eigenfunctions when the 
normalization procedure is difficult or arcane, by the relation 

       
 

 

'
, '; d '

2 '
z

z z z i zi i zi

iC

z zj
g z z f z f z

w z



   




    .  (2.99) 

However, when using this form of Green’s function in (2.90) to construct the 3-D Green’s 

function, the denominator, in general, is a complicated function of 
z . For example, when 

the problem possesses a discrete spectrum, one can evaluate the Green’s function by residue 
theorem. To do so, one usually expands the denominator in a Taylor series around simple 
poles, which requires the knowledge of the derivative of the denominator, which can be a 
tedious task prone to errors, requiring consequently the use of symbolic software tools such 
as Mathematica or MATLAB if they are to be avoided. On the other hand, form (2.94) is more 
easily obtained in closed-domain problems, since a straightforward numerical 
normalization routine requiring nothing more than simple closed-form integrals can be 
easily implemented. Unfortunately, in order to find the positions of simple poles in the 
spectral plane, one has to solve a transcendental dispersion equation, regardless of which 
method is used. Since the internal problem, as we have defined it, always involves regions 
closed by PEC boundary conditions, we opted for the form (2.94). 

 We start with the TM longitudinal Green’s function. The quantity of interest, in this 

case, is the admittance  ' , 'Y z z , its defining equation easily found from (2.76) to be  

        2 '2 ' ' ', ' 'zd Y z z j Y z z        ,                            (2.100)

' 'Y equal to  , permittivity being the one of the medium at the observation point z .  

Then, by defining    ' '1
, ; , ';z z zg z z Y z z

j
 


  we obtain the classical Green’s function 

differential equation 
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        2 ' ' ', '; 'z z z zd g z z z z      ,                             (2.101) 

'

zg  readily interpretable from transmission-line equations as the current at a point z  on a 

transmission line defined by the characteristic impedance 'Z  and propagation constant 
' '

z  , due to a negative unit series voltage at 'z  , the scheme of which is given in Figure 

2.6                                                                                              

Figure 2.6 Network scheme for the TM admittance Green’s function calculation 

 

Then it is obvious that the boundary conditions are such that  
1, 2,

' 0z z z z z
d g


 , 

1 0z   and  

2z h , the particular end points chosen so for convenience and simplicity. Following the 

recipe of the first method, we first find normalized eigenfunctions of the operator 2

z zL d  , 

defined by 

        2 ' ' 0z zi id f z  ,               (2.102) 

satisfying the same boundary conditions as the Green’s function itself. These are easily 
found to be  

      ' ' 'cos , ,i
i i i

i
f z z i

h h

 
         ,                            (2.103) 

i  being the Neumann number defined as 1i   if 0i  , and 2i   otherwise.  

Substituting these eigenfunctions into the Green’s function general expression (2.94), and 
subsequently into the construction contour integral (2.90), it is easily shown by virtue of 
the residue theorem (since the integration contour is such that it captures all the poles of 
the longitudinal Green’s function, shown in Figure 2.7) that the 3-D spatial TM Green’s 
function is given by the modal sum 

           2' ' ' '

0

0

1
G , ' ' cos cos '

4

i i
ti zi zi

i

H k k z k z
j h h

 



 r r ρ ρ  ,    (2.104) 

from which it is evident that it will converge fast when the height of the waveguide is such 
that higher-order modes are in cut-off, due to the exponential convergence of the Hankel 
zero-order function for imaginary arguments, i.e.    

1

z
' z

'
0z  z h

0TZ  0TZ 

 '

Z '

 '

Z '

 , 'I Y z z
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     2 ' '

0 '

2
' exp '

' 4
ti ti

ti

H k j
j




 

  
     
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ρ ρ ρ ρ

ρ ρ
 .                  (2.105) 

Another major advantage of this form is that it is expressed in terms of cylindrical functions, 
naturally conforming to cylindrical boundaries, and expressible in any shifted coordinate 
system by virtue of the Gegenbauer addition theorem, which will prove to be a crucial 
property in solving the problem of scattering off of cylinders in a PPW.  

 

Finally, we can find the scalar potential necessary to construct the TM part of the Green’s 

dyadic by    ' '

2

1
, ' G , '

t

 


r r r rS , which one can attempt to obtain using the Green’s 

function construction integral over the contour capturing solely the singularities of the  
longitudinal GF (Figure 2.7), but now in the transverse wavenumber spectral plane where 
the integration contour avoids the Hankel function’s logarithmic branch cut. 
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               (2.106) 

 

Figure 2.7 Topology of the Green’s function singularities in the   plane 

   

However, this direct spectral approach tacitly assumes the validity of interchange of 
integration and differentiation, which relies on the ability to regularize the integral, i.e. 

removing the offending 0tk   singularity which makes the integral intractable. We show 

that this is not feasible in a straightforward way in appendix A. An alternative approach, 
based on the spectral theory of operators [84, p. 262], offers an unambiguous way to 

consistently define the odd-looking 21/ t  operator, relying on the possibility of finding an 

orthonormal, complete set of eigenfunctions of the operator 2

t . 

( )zsingularities of g simple poles   

( )tsingularity of g branch cut  

k

 Im zk

 Re zk

z
C
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Hence, let us assume we are in possession of a set  nf , each function in this set having 

compact support over the interval  1 2,ρ ρ  and satisfying the transverse wave-equation 

under impedance-type boundary conditions, i.e. 

      
1 2

2 2

1,2 ρ ,ρ
0 , 0t tn n n nk f f f


        

ρ
ρ   .             (2.107) 

Furthermore, let each function 
nf   be a member of the Hilbert space of square-integrable 

functions, i.e. 
2n Lf H , such that there exists a completeness relation               

      *, dn m n m nm

D

f f f f   ρ ρ ρ    ,                             (2.108) 

induced by the complex-conjugate scalar product over the common support of the functions 
involved, denoted by D . Then by classical arguments of Fourier analysis it follows that this 
set may be used to construct an arbitrary function as 

             
1

N

n n

n

F a f


ρ ρ      ,               (2.109) 

where the index n  runs, in general, to infinity, and the expansion coefficients are obtained 
as 

            *

n n

D

a F f d  ρ ρ ρ  .               (2.110) 

Acting on an arbitrary function with 2

t , in view of the eigenfunction equation (2.107), 

yields 

       2 2

1

N

t tn n n

n

F k a f


  ρ ρ  ,               (2.111) 

which can easily be represented in matrix form, due to the operator being diagonal in this 
basis, as 

   

2
1 11

2
2 22

2

2

0 0

0 0 0

0

0

0 0

t

t

t

n NtN

a fk

a fk

F

a fk

      
  

    
      

    
       

      
          

ρ  .             (2.112) 

Now, since the operator 21/ t is defined by the relation  2

2

1
t

t

 


1 , it follows that it can be 

represented as the matrix inverse to 2

t  
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               (2.113) 

By induction one easily generalizes this result to N  , which is the commonly 
encountered scenario. 

 In our case, all of the above assumptions hold due to the self-adjointness of the 2

t  

operator, and since the transverse Green’s function is representable in terms of its 

eigenfunctions, of the form      2
,jn jn

n t n tJ k e H k e    , as can be seen from (2.91). 

Hence, operationally, we obtain the S-potentials simply by dividing each term of the Green’s 
function modal expansion by the square of the respective mode’s transverse wavenumber! 
According to this method, the general form of the S-potential is 

  
   

   
2 '
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, ' cos cos '

4

ti i i
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i ti
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k z k z

j k h h

 






ρ ρ
r rS  . (2.114) 

Here we point out a possible source of error, where the incorrect definition of the inverse 
Laplace operator results in an extra logarithmic term, as can be obtained by, e.g.,  formal 
derivation in the vein of Felsen and Marcuvitz [64, Sec. 1.4].  Doing so leads to a potential 
unbounded at infinity. Consequently, the slot admittance derived in terms of scalar 
potentials also diverges, unless a special gauge is used to keep all logarithmic terms zero. 
However, this leads to conceptual difficulties and should be avoided. Later on we shall 
demonstrate how to derive the slot admittance consistently (see Appendix A, pp. 140).  

Analogously, we solve the TE problem by forming a transmission-line problem, this time 

deriving the TE impedance function  '' , 'Z z z , defined by 

        2 ''2 '' '' '', ' 'zd Z z z j Z z z       ,               (2.115) 

'' ''Z equal to  . Again, defining    ' '' '' '', ; , '; /z z zg z z Z z z j   , we obtain the Green’s 

function equation, where ''

zg   is interpreted as the voltage on a transmission line at z  due 

to a shunt negative unit current generator at 'z , the scheme of which is shown in Figure 2.8. 

It satisfies  
1, 2,

'' 0z z z z
g


 , and again, in order to derive it, we must first solve the eigenvalue 

problem     

    2 '' '' 0z zi id f z    , (2.116) 
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Figure 2.8  Network scheme for the TE impedance Green’s function calculation 

       

 

    

where the eigenfunctions are now found to be 

        '' '' '2
sin , , / 0i i i

i
f z z i

h h


        .             (2.117) 

Repeating the same steps as for the TM Green’s function, we obtain 

           2'' '' '' ''
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1 2 2
G , ' ' sin sin '

4
ti zi zi

i

H k k z k z
j h h





 r r ρ ρ ,          (2.118)

and, subsequently, 
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it ti
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j k h h






   




ρ ρ
r r r rS         

            (2.119) 

It should be noted that the TE modal sum runs from the first mode to infinity, whereas the 
TM modal sum runs from zeroth mode. This is due to the TM mode spectrum allowing the 
existence of a no-cutoff mode with no dependence on the longitudinal coordinate, i.e. a TEM 
mode. Even though in the general case one needs to define the TEM problem separately, 
here it was not necessary since the poles of both the TM and TE Green’s function include the 
zeroth mode, but it contributes solely to the scalar TM potential because of its cosine 
dependence in z , whereas it is formally present in the TE potential but its contribution is 
zero due to sine dependence in z . 

 With the scalar potential functions known, it is possible to derive the field due to an 
arbitrary magnetic current source radiating into a PPW by (2.64). This serves as the starting 
point in the hybrid method, since it not only allows the calculation of the source field 
impinging on a cylinder embedded inside a PPW, but in case of presence of radiating slots 
on metal plates, also allows one to formulate an integral equation leading to an MoM 
problem. 
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2.2.1.7 What If the Medium Is Stratified? 

 Several recently proposed designs, including an LTCC slot array [30], an air-gap 
RLSA [85], to name a few, rely on the inclusion of multilayered dielectrics inside PPWs, 
thereby taking advantage of peculiar dispersion characteristics of such structures to 
broaden the operational band or of loss reduction by focusing the field away from 
conducting boundaries. Though largely in its experimental phase, such devices show 
promising features previously unobtainable by classical single-layer design. Therefore, it is 
of interest to include the effects of such loading into the general analysis of SIW structures. 

 In order to do so, we must rederive the PPW Green’s function to apply to stratified 
media. Here we shall consider only longitudinally stratified media, since it is the most 
commonly encountered in practice.  First we will give an extension of the field expressions 
derived in previous sections based on Maxwell’s equations for an inhomogeneous medium, 
followed by comments on the differences between the single- and multi-layer case.  

 The problem, shown in Figure 2.9, consists of a number of stacked dielectric layers 
of varying thickness, stratified in the longitudinal direction. Each layer has constant 
permittivity and permeability within a layer, but may change abruptly from one to the other, 
and a source may be located in any layer or even span several, if not all, layers. In other 
words, layer material parameters are considered piecewise-constant. We shall keep this in 
mind since care must be exercised in order to define a consistent mathematical problem. 

As can be noted already, trouble may arise at layer junctions, since there the derivatives of 
discontinuous material parameters, present in Maxwell’s equations, give rise to terms 
containing delta functions and its derivatives which cannot be handled in a consistent 
manner. Therefore, one formulates a so-called “weak” Sturm-Liouvile problem [77, Sec. 5.2], 
where one approaches the layer junction point in a limiting procedure, “artificially” 
stipulating the continuity of fields. This then bypasses the problems associated with 
discontinuous derivatives. However, we are getting ahead of ourselves here.    

First, we observe that the whole procedure of decomposing the field dependence on 
transverse and longitudinal coordinates, contained in (2.65) through (2.78), holds for 
inhomogeneous media as well. The major complication in the general inhomogeneous case 
is the possible variability of the guide’s cross-section shape, the difficulty there being the 
representation of a field’s transverse functional dependence, which may become difficult, 

or even intractable. Now, after one introduces scalar potentials  I r and  V r  , the field 

expressions at source-free points (2.81) should be modified to read 

     
         

         

' ''

' ''

ˆ ˆ ,

ˆ ˆ ,

j z I V

I j z V





     

     

E r z r z r

H r z r z r
               (2.120) 

where the dependence of material parameters on the longitudinal coordinate is explicitly 
exhibited. Then, to connect the fields to sources, we repeat the same procedure as outlined 
in the previous section – we explicitly derive transmission-line currents and voltages due to 

a delta-source    ' '', ' , , 'I z z V z z  as follows. First, to find the TM current, we consider the 

special “concentrated” sources (2.83), which, after projecting them onto the modal basis, 
lead to a network representation in terms of negative unit voltage source 

     ' ' ' 'i iv z v z z z    connected in series to a z  transmission line, and a negative unit 

shunt current      ' ' ' 'i ii z i z z z  , the line itself characterized by a z  dependent 
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propagation constant  ' z  and the associated characteristic impedance 

     ' ' /Z z z z   . 

 

Figure 2.9 A PPW filled with a longitudinally stratified dielectric 

    

 

From equations (2.75), still valid in the inhomogeneous case, one can relate, by linearity, 
the transmission-line current to transmission-line source voltage and current as 

            ' ' ' I' ', ' , ' ' , ' 'i i i i iI z z Y z z v z T z z i z     . (2.121) 

Now, to simplify this relation, we use the symmetry property of TL Green’s function I '

iT  
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 
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 

             (2.122) 

whereby we have  reexpressed I '

iT in terms of '

iY . Note that, as opposed to the single-layer 

case, the factor in front of the derivative of the admittance Green’s function depends on the 
source coordinate. Then, inserting (2.122) into (2.121) yields 

        
 

 '

' ' ' '1
, ' ' ' , '

'
i i i iz

I z z v z i z d Y z z
j z

 
    

 
 ,              (2.123) 

reducing our effort to finding solely the TM admittance Green’s function. The TE voltage, 
obtained either by duality from (2.123) or straightforward derivation from (2.75), is 
obtained as 

1 1 1, ,k 

2 2 2, ,k 
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        
 

 '

'' '' '' ''1
, ' ' ' , '

'
i i i iz

V z z i z v z d Z z z
j z

 
    

 
 .             (2.124) 

Therefore, all we need to do now to express the field in terms of the assumed modal 

expansion is to explicitly express the source modal coefficients 
ii  and 

iv  by projection 

(2.84) onto the transverse field basis. The TM current, after expressing the vector modal 
functions explicitly and some relatively straightforward vector algebra, is expressed as 
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  (2.125) 

where, upon introducing a function     

  
 

   
 ' '

' 2

'1
, ' , '

'

i i

i

i ti

Y z z
j z k

 


 

ρ ρ
r rS  , (2.126)      

and assuming its uniform convergence, enabling the interchange of summation and 
differential operators, (2.125) can be expressed more concisely as 

          ' ' '

0 0
ˆ ˆ, ' ' ' , ' ' ' , ' ,I S j z S           r r z r r J z r r M             (2.127) 

while the TE voltage function can be similarly expressed as 

          '' '' ''

0 0
ˆ ˆ, ' ' ' , ' ' ' , ' ,V S j z S           r r z r r M z r r J         (2.128) 

with  

    
 

   
 '' ''

'' 2

'1
, ' , '

'

i i

i

i ti

Z z z
j z k

 
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ρ ρ
r rS .              (2.129) 

On inserting (2.127) and (2.128) into (2.120), with 
0J  being a zero-vector and assuming a 

piecewise-continuous medium, we obtain expressions for fields due to an arbitrarily 
oriented  point magnetic current 
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          (2.130) 

from which the magnetic Green’s dyadic is defined as  
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                                (2.131) 

This form, resembling the single-layer form, bears no extra complexities with respect to the 
single-layer case. In essence, one only needs to find the appropriate modal TL Green’s 
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functions, still expressible in closed form, albeit finding modal propagation constants 
requires a numerical or graphical procedure, as will be explained shortly. 

 Now we turn to the general solution to (2.131). It is clear that we need to find the 
scalar potentials, which can be accomplished by finding TM and TE Green’s functions first. 
We use here the same formalism as the one applied in the previous section for the single-
layer case, with slight modifications to render the analysis simpler and clearer. We begin by 
noting that the scalar Green’s function can still be constructed from knowledge of 
characteristic Green’s functions. Since the boundary conditions at transverse infinity are not 
affected by the medium stratification, and if the field is to be continuous, it has to have the 
same form in each layer, leading to the exact same form of solution as for the single-layer 
case (2.92), again both for TE and TM fields. However, the characteristic longitudinal 
Green’s function complicates, since now one has to define it for all distinct source and 
observation point combinations. First, we need to obtain the differential equations for 
Green’s functions of interest. This can be done as for the single-layer case, by virtue of 
transmission-line equations (2.76) and (2.77) from which one derives 

  

 
 

     

 
 

     

' ' '

'' '' ''

1
, '; ' ' ,

1
, '; ' '

z z z z

z z z z

z d d Y z z j z z z
z

z d d Z z z j z z z
z

    


    


 
      

 

 
      

 

                   

            (2.132) 

Then, upon defining    ' ' '' , ';z zY j z g z z   and    '' '' ''' , ';z zZ j z g z z  , the 

longitudinal characteristic Green’s functions can be shown to satisfy 
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  ,          (2.133)    

the weighting function  w z  being  z for TM functions and  z for TE functions, while

z is the spectral parameter of the layer containing the observation point, satisfying  
2

z n tk    ( n  denoting the observation layer). Here it is worth mentioning that the 

presence of discontinuous material boundaries does not affect the self-adjointness of the 

operator 
 

 
1

z z zL d w z d
w z

 , hence preserving the orthogonality property of its 

eigenfunction set, now under the weighted scalar product  
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b

w

a

f h f z h z w z z  .              (2.134)

With the problem so defined, one can easily show that the characteristic longitudinal 
Green’s function is of the form 
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 After this preliminary discussion, we shall solve the TM problem first. To this end, we seek 
the admittance Green’s function, defined by 
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  (2.136)              

where square brackets denote the difference between the value of the bracketed quantity 
just above and just below a layer junction, the adverb “just” meaning “infinitesimally”. Again, 
this problem can be formulated as a network problem, an exemplary scheme of which is 
given in Figure 2.10. 

Figure 2.10 Network scheme of a TM problem in a longitudinally stratified, piecewise-
continuous medium 

 

In order to construct the Green’s function, we first construct the eigenfunction basis by 
solving the eigenfunction problem 
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             (2.137) 

the eigenfunctions satisfying the same boundary conditions as the Green’s function itself. 
From the boundary conditions at PEC boundaries, it is clear that in layers adjacent to them 
the eigenfunctions must be of the form  
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 ,                     (2.138) 

' '

, ,i n zi n  , while in the intermediate layers they must be of general form, hence 
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n  denoting the number of the layer containing the observation point, and ' 2

in n tk   . The 

continuity requirements on '

if , interpreted as the current supported by the transmission 

line in the absence of sources, and the associated “voltage” '

ir , defined as 
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    ,                 (2.140) 

then enable one to express the coefficients 
nc  and 

ns  in terms of either 
1c or 

Nc .  

Once all the coefficients of the eigenfunction are expressed in terms of a single-one, 
whichever one may choose, the eigenfunction can be normalised under the scalar product 
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In addition, the enforcement of boundary conditions leads to a linear system in unknown 
coefficients, the determinant of which leads to the dispersion equation relating the 
propagation constants in different layers. Unfortunately, since the unknown of this equation 
appears as the argument of products of irrational and trigonometric functions, it renders 
the equation transcendental, hence requiring a numerical solution. Once the propagation 
constants of eigenfunctions are known, one constructs the longitudinal characteristic 
Green’s function as before, and uses it in the construction integral to finally obtain the 3D-
Green’s function, exhibiting the exact same general form as the single-layer scalar Green’s 
function.   

 The TE problem is obtained by duality from the TM solution, or straightforward 
derivation analogous to the TM case. In particular, now we seek the impedance Green’s 
function, defined by 

     

 
 

   

   
 

 

'' '' ''

'' '' '' '' '' ''

0,

1
, '; ' ,

1
, '; 0 , , '; , , '; 0 ,

n

n

n

n

z z z z z

d
d

z z z z z z zz h d
d

z d d g z z z z
z

g z z g z z d g z z
z

   


  


 
 

  
 

 
      

 


 
           

 

       

            (2.142) 

the boundary conditions derived from (2.53), and its (exemplary) network scheme given in 
Figure 2.11. Again, we seek an eigenfunction basis from which we can construct the solution 
to (2.142), obtainable upon solving the general eigenvalue problem 
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whose general solution is  
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Figure 2.11 Network scheme  of a TE problem in a longitudinally stratified, piecewise-
continuous medium 

 

The eigenfunctions, so obtained, are then normalized under the scalar product 
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and their respective eigenvalues are found from the pertinent dispersion equation, 
depending on the specific geometric parameters of the loaded waveguide. From the 
eigenfunction basis one constructs the Green’s function as in the TM case.   

 

Example 

 To give a concrete example of a multilayered medium Green’s function, we shall 
demonstrate its derivation for a PPW loaded with a two-layer medium, i.e. a medium 
composed of two planar slabs of differing permittivity, joined at z d . First, according to 
the recipe laid out a moment ago, we solve the eigenvalue problems to find the general 
forms of eigenfunctions (with slight abuse of notation) as 
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Then the continuity requirements at z d enable us to connect the unknown coefficients 
of the respective eigenfunctions to give 
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and give the TM and TE dispersion equations, respectively 
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their solutions determining the eigenvalues of the problem, obtained either graphically (see 
for example FELSEN, 1973., p. 292) or numerically by a root-finding algorithm. Here the 
parameters t denotes the thickness of each layer. Though these equations may seem a bit 
inconspicuous, if we rewrite them as 
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we can give their interpretation immediately as the sum of terminal 
impedances/admittances at the bottom and the top (from the “left” and “right” as commonly 
said in the microwave community) of the structure at the layer junction, which is zero, 
implying a resonance, i.e. (2.149) is the transmission-line resonance condition.  

Now, since one needs a normalized set of eigenfunctions to construct the characteristic 
Green’s function, we normalize it under the weighted scalar product which yields 
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            (2.150) 

Finally, the Green’s functions, obtained by the construction integral (2.90) are 
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where  1 2/i i i z d
f f


 . We note here that the Green’s functions, so defined, satisfy the 

following reciprocity property 
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rendering their derivation easier, since the knowledge of a Green’s function for one 
source/observation point combination implies the knowledge of the converse combination. 

It is now clear where the main complication with respect to the single-layer case lies – the 
necessity of defining the Green’s function for each source/observation point combination. 
Though tedious, the derivation of Green’s functions in layered media may be automated 
using the T-matrix formalism, as already mentioned, whereby a linear relation is 
established between the voltages and currents (to be thought of in a generalized sense) at 
two different points on a transmission line by 
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               (2.153)

the linear operator usually denoted by T  . Now, in our case it is convenient to relate the 

voltage and current of a given mode in one medium to the ones in another medium. The T-
matrix relating  the voltages and currents at two points in a given medium (or, to use the 
transmission-line terminology, transmission-line section) is [86] 
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index i  denoting the mode under consideration, and n  the medium (layer), whereas 

2 1z z z   . The major advantage of using this formalism is the simple handling of a large 

number of different sections by merely cascading the T-matrices of each section. To be more 
specific, one relates the voltage-current vector at a point in the transmission-line by 
propagating it towards the point of interest using the T-matrix of each section we are 
propagating it through, i.e.  

     
1

1 1

n
n

j

jn

V V

I I

   
    

  
T                (2.155) 

This allows straightforward construction of eigenfunctions from the voltages and currents 
in one of the extremal layers.  

Though at this point it may not be obvious why this particular approach to deriving dyadic 
Green’s functions (abbreviated as “DGF” from here on) is more convenient than the 
alternatives (e.g. [87], [88]), it will become apparent in the following sections dealing with 
the formulation of method-of-moments problems. For now it should be stressed that the 
SMF formalism provides an explicit procedure for construction of DGFs due to the 
straightforward isolation of singular terms inherent in the inverse operator approach used. 
Moreover, it enables one to deal primarily with scalar quantities, as opposed to vector or 
dyadic ones in other common approaches. In addition, the recasting of the problem in 
transmission-line terminology gives a conceptually familiar, intuitive physical picture of the 
abstract mathematical manipulations involved. The use of the characteristic GF approach 
enables recipe-like construction of normalized eigenfunctions, even in situations where the 
normalization procedure is not at all obvious. 
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2.2.1.8 Scattering by Cylindrical Posts 

 With the DGF derived, we can find the field due to an arbitrary, well-behaved 
magnetic current. Now we turn to the problem of scattering off cylindrical posts, ever-
present in SIW devices. The approach adopted here is based on works by [89], [41]. We will 
show how to model the field scattered off a post, and how to find the field scattered by a 
number of posts by solving a reduced linear system which represents the approximate self-
consistency condition when the boundary conditions on posts are enforced. In addition, we 
provide a rule-of-thumb criterion for choosing the number of modes sufficient to accurately 
describe the electromagnetic interaction in a typical SIW problem, and discuss the 
orthogonality of modes scattered by posts. Firstly, let us consider a general, cylindrical post 
of circular cross-section, running from the bottom to the top plate of a PPW, as shown in 
Figure 2.12. It can have any radius and might be made either from metal or a dielectric 
material. The only restriction we place upon it is that it is not multilayered, i.e. not stratified 

in the ̂ - direction, which is the unit vector of the displacement vector spanning from the 

cylinder axis to an arbitrary observation point. Though an interesting case, we neglect it 
since it is, to the author’s knowledge, not commonly present in practical SIW devices. The 
field incident on such a cylinder may have an arbitrary functional dependence, and will 
induce currents on it, of polarization or conduction kind. From the results in the previous 
subsection, it is evident that the exciting field will assume a form of a modal sum. Hence, it 
is only natural to expect that the field scattered of a cylinder will have a similar form in the 
same basis, since in source-free regions both fields satisfy the same differential equations 
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Figure 2.12 a) Geometry of a typical SIW post ; b) Typical post-scattering problem 

a)        b)  

 

and same boundary conditions on metal plates and, possibly, at material junctions if 
inhomogeneous materials exist within the PPW. In addition, these fields will be 
decomposable into TE and TM parts. Therefore, it will be possible to express a general 
scattered field as 
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index q  denoting the q -th cylinder, vector functions M and N being conveniently 

normalized  functions representing the TM and TE modal field, respectively, with 

coefficients ,m nA  being their amplitudes, independent of , qr r . Indexes m  and n  

enumerate the longitudinal and azimuthal mode in question, respectively, since, in order to 
fully describe the field, one must allow a general variation in z ,   and   . It should be 

stressed that there is a certain amount of freedom in choosing the form of modal fields, 
reflected in the choice of the normalization and radial field dependence. To find the most 
convenient one, we ask the following question – given a known impressed magnetic current, 
how does the field inside the PPW look like? Though it may sound offbeat, it will lead us to 
the consideration of the general form of modes excited in the PPW. Using the results of 
previous subsections, first for the single-layer case (which will serve as the conceptual basis 
for later extension to stratified media), we can express the impressed field succintly as 

     
 

   

   
 

     

'

, ' '

2

''

, '' ''

2 2

, '
ˆ ˆ' '

, '1
ˆ ˆ' ' ' ' d ' ,

t m

imp m m

m t

t m

m m

m t

g
j i z i z

g
v z v z

k




       


         





ρ ρ
H r z z

ρ ρ
z z M r r

  

                       (2.158)

where '

mi and ''

mv  are normalized TM and TE longitudinal mode functions. We discarded the 

source corrections appearing in (2.64) since we naturally assume that no cylinder overlaps 
with the source region, therefore  'r r . Now, the ultimate goal here is to separate out the 
observation and source-coordinate functional dependence, leading to a form resembling the 
natural cavity modes. From (2.158) it is apparent that the longitudinal part is already 
separated. However, the transverse part has ρ and 'ρ tangled (see  (2.159)). In order to 

mitigate this, we recall that ultimately we have to find the field impinging on the surface of 
the post (possibly penetrating its interior if it is dielectric) to construct a boundary problem. 
In a global coordinate system, this becomes nigh intractable, since a parametrization of the 
cylinder’s surface must be found, and for each one that is not centered in the origin of this 
global system, it presents an ordeal. Hence, we shall reexpress the impinging field in the 

coordinate system centered on the cylinder’s axis at qρ . This is facilitated by a standard trick 

– one uses the Gegenbauer addition theorem, whereby the transverse GF is transformed as 
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  (2.159) 

the pertinent coordinates given in Figure 2.13. Now we can integrate out the source-
coordinate dependence in (2.158) since 
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where 
1 2

ˆ ˆ,D D   z z  (primed operators denote action on functions dependant 

on source coordinates). 

If now we assume 'q qR  ρ ρ , thus “forcing” the outgoing wave representation, we finally 

arrive to the field representation of source-excited, incoming waves in the global coordinate 
system by outgoing waves in the cylinder system 

Figure 2.13 Geometrical parameters related to the Gegenbauer addition theorem 
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From this expression, it becomes clear how to express the field scattered by cylinders in the 
most convenient form – by using the exact same functional form in the observation 
coordinate as the impinging field itself!  This enables simpler expression of boundary 
conditions since both the impinging and scattered field are treated on the same footing. 
Therefore, we choose  
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if the cylinder in question is a PEC, or if it is dielectric  
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which can be easily verified to satisfy the vector Helmholtz equation. Note that for the 
dielectric cylinder (which we shall refer to as a “post” from now on) problem we asserted 
the same vertical dependence in both the post and the surrounding medium, anticipating 
the continuity of tangential field components across the boundary. Moreover, the factor 
1/ k  appearing in the definition of TE functions was added just for convenience, as will be 
shown shortly. The basis, shown in (2.162) and (2.163), is the well-known Hansen-type 
basis [52, Ch. 4], used by a number of authors not only to represent the scattered field, but 
as a basis for construcion of dyadic GFs, as mentioned in the previous subsections. However, 
a number of problems are associated with the latter, since the spurious singularities are 
difficult to exhibit explicitly using this approach. Nonetheless, no detriments are associated 
with the scattered field representation. 

In sum, with the scattered field basis chosen in this manner, we are ready to tackle the 
general problem of scattering from multiple posts embedded in a PPW. First, we shall derive 
the general case of an arbitrary number of dielectric/PEC posts.  

 For this reason, consider a dielectric-loaded PPW of height h , permittivity 
r ,  with 

N posts, d pN N N   being the sum of the numbers of dielectric and metal posts. A 

general source M  excites the waveguide, the kind of which is not important as long as it 
injects a finite amount of power into it. Our goal then is to derive an explicit expression for 
the total field in the PPW, and in doing so we shall adhere to the notation used in [45] and 
[46].  

We start by writing down the total field as the sum of the impressed and scattered field 

         ,s

imp p p

p

 H r H r H r r  ,               (2.164)

where the sum in the second term runs over all the posts, denoted by q . Now, it is clear that 

the impressed field is readily found by (2.158). On the other hand, we do not know the 
amplitudes of the scattered fields. In order to find them, we must solve the boundary 
problem at each post, which depends on the material the post is made from.  

 First we consider a PEC post, for which the boundary condition is stated as: the 
tangential components of the sum of the impressed electric field, the electric field scatterred 
by post q and the electric field scatterred towards q  by all the other posts must be zero at the 

boundary surface of post q , i.e.   

    ˆ 0
q

q imp p q R
p q




 
    
 

n E E E  ,              (2.165)

where ˆ
qn is the post q  unit surface normal, expressed as  ˆ /q q q  n ρ ρ ρ ρ   and qR

denotes the bounding surface. As demonstrated at the beggining of this subsection, the most 
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elegant way to enforce the boundary conditions on a post is to reexpress the fields in its 
local coordinate system centred on its axis. To get there, we shall first have to express the 
pertinent electric fields from magnetic fields using the Maxwell curl equation for H as  

    ˆ 0
q

q imp p q R
p qj 


 
     

 
n H H H .             (2.166)

The impressed field impinging on the post q   is already given by (2.161), whereas the field 

scatterred toward q  by all the remaining posts is given by 
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where the terms are centered on the axes of scattering posts. However, using the 
Gegenbauer addition theorem again, now applied to Hankel functions of positive-integer 
order as  
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 we shift the scattered fields reference points onto post q  axis, obtaining

           

           

2' ' ' '

, , , ,

, ,

2'' '' '' ''

, , , ,

, ,

ˆ 1

1
ˆ 1

q qp

q qp

n r jr j n r

p m n p n t m q n r t m p q m

p q p q m n r

n r jr j n r

m n p n t m q n r t m p q m

p q m n r

A J k H k e e i z

A J k H k e e v z
k

 

 


   



  


   



 

 
        

 

 
       

 



  

 

H z ρ ρ ρ ρ

z ρ ρ ρ ρ



                      (2.169) 

Then, upon using identities ' '

, ,m n m nk M N  and '' ''

, ,m n m nk N M , derivable from 

Helmholtz equations of respective quantities, the electric field scattered toward q  is finally 

obtained as 
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Applying the same reasoning for the impressed field, we express it in the q  system as  
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The field scattered by post q  is simply expressed using the same expansion as for fields   

scattered by other posts 
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with all the partial fields expressed in the post’s local system, we can setup a boundary 
problem simply by inserting the obtained fields into (2.165), leading to the so-called self-
consistency conditions (as commonly used in multiple-scattering theory), for TM and TE 
fields independently. This is possible because posts run from the top to the bottom plate, 
and their surface impedance is zero; hence the currents excited on posts will maintain the 
form of the modal fields incident on them and will not couple TM and TE modes. In other 
words, TM and TE fields satisfy the PEC boundary conditions on posts independently, in the 
following way 
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for TM fields, and  
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for TE fields. These equations constitute infinite linear systems; hence a general analytical 
solution is intractable. Nevertheless, in practical problems only a small number of modes 
contribute to the overall field ( i.e. few modes will suffice to approximate EM fields well, the 
sufficient number of which leads to satisfactory accuracy we will discuss shortly). This is 
mostly so because the PPWs in question operate in the dominant-mode regime, and posts 
are predominantly small compared to the wavelength. Then the solution, albeit an 
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approximate one, to (2.173) and (2.174) is tractable using truncated forms of the respective 
self-consistency conditions. Rigorously speaking, we are representing the field as a series of 

eigenvectors of a compact, self-adjoint operator over the space of 2L functions defined on 
3 . Since the collection of all its eigenvectors forms a complete base, it follows that it is 

possible to expand a sufficiently well-behaved function in terms of a weighted sum of the 
aforementioned eigenvectors; the weights being the expansion coefficients. Moreover, since 
the sum converges, it is implied that the expansion coefficients of terms of order N M   

tend to zero as the order of the partial sum, denoted by N , is increased to infinity. Hence, 
we may approximate the true solution sufficiently well by truncating the sum at finite order. 

Therefore, we consider 
mN  longitudinal modes and N  azimuthal harmonics in the 

following analysis, although we could, in principle, consider an infinity of modes. 

Firstly, to facilitate manipulation of the equations, we introduce the following notation 
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  denoting the impressed field excitation amplitudes, whereas   denote the scalar 
potentials.  

Then, one notes that the summands in each of the sums, enumerated by the index pair

 ,m n , are linearly independent. In addition, terms with either differing m  or n   are 

orthogonal. This property, as mentioned before, implies that modes used in the expansion 
of fields are not coupled – there is not only no coupling between TM and TE modes, but 
between individual modes of TM or TE sets! It turns out that this property singularly 
contributes to the efficiency of the method, owing to a smaller number of non-zero terms in 
the interaction matrices of linear systems one has to consider. For example, if the modes are 
not orthogonal, as is the case in e.g. PPWs with poorly conducting metal plates, then one 
needs to compute the cross-coupling amplitudes describing the energy transfer between 
two modes belonging to different sets, whereas this is not the case when the modes are 
orthogonal. Whether the modes are orthogonal or not depends on the properties of the 
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Helmholtz operator defining the problem. If the operator is self-adjoint, the modes will be 
orthogonal, whereas if it is non-self-adjoint this will, generally, not be the case. 

Continuing further, we inspect the constraints the scalar potentials must fulfil if the self-
consistency conditions (referred to from here on as SCC)   are to be satisfied, beginning with 
TM fields.  

Since each term in (2.173) has the form  'ˆ ˆ ' ,q z  n z ρ ρ , using the identity 

2ˆ ˆ
z t t    z z , along with the fact that this operator transforms as a vector (since 

it is constructed as the cross product of a vector and a pseudovector), we arrive to the 

conclusion that  ' , 0
q q

q a
z

 
  

ρ ρ
ρ ρ . 

As for the TE equation (2.174), all terms are of the form  ''ˆ ˆ ' ,q z  n z ρ ρ , which, 

upon reexpressing the operator acting on the scalar function as 

 ˆ ˆˆ ˆ ˆ
qq q n     n z n z z , implies that in order to satisfy the SCC, each scalar function 

has to satisfy  '' , 0
q q q

n q a
z

 
   

ρ ρ
ρ ρ . 

Hence, using the obtained constraints, along with scalarly multiplying  (2.173) by  '

mi z  

and (2.174) with  ''

mv z , using the scalar product 
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where the scalar functions have no z   dependence anymore, since it was integrated out.   
It is clear that now we have equations relating modes with a fixed longitudinal dependence, 
but having different azimuthal dependence. However, noting that the set of azimuthal 

harmonics  qjr
e


is orthogonal, we conclude that self-consistency conditions can be 

formulated for each n-th harmonic, which can be formally accomplished by scalarly 

multiplying the last two equations by qjr
e


(note that the complex-conjugate scalar product 

is used, and that r has the same span as n, implying they are interchangeable), giving 
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                      (2.177) 

from which, by dividing both sides of the TM SCC by    2 '

,n t m qH k a , the TE SCC by  
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the prime on cylindrical functions pertaining to TE fields denoting the derivative with 

respect to their respective arguments. Coefficients '/ ''T are interpreted as the amplitude of 
the modal field, characterized by indexes ,m r , which is incident on post q when a unit 

amplitude modal field, characterized by indexes ,m n is scattered off the post p . 

Analogously, coefficients , ,m r q  are interpreted as the amplitude of the modal field, 

characterized by indexes ,m r , which is incident on post q when an impressed magnetic 

current radiates inside the guide.  

Writing down the self-consistency conditions for the remaining posts, we obtain a linear 
system having the following form: 

     T A ,m mm
     

which, more explicitly, has the following structure:  
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As we have assumed the presence of exclusively PEC posts for the present moment, the 

dimensions of the matrix T
m

will be posts postsN N N N   , whereas the unknown scattering 

amplitudes vector Am  will be of length postsN N . This makes it clear that one needs to solve 

2 mN  such problems to find the EM field to a given degree of accuracy, stipulated by the 

choice of the number of vertical and azimuthal harmonics used.  
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Now, if one wishes to consider scattering off of dielectric posts, one sets up a problem in 
which the fields inside and outside the cylinders must be matched in such a fashion that the 
tangential components of EM fields are continuous across the surrounding medium/post 
boundary. As already hinted at the beginning of this subsection, we require a different 
scattered-field representation now, since we need to model the fields in the interior as well 
as in the exterior of posts. Keeping in mind the scattered fields representation of (2.163), 
we first set-up a boundary problem for a generic dielectric post as 

    

ˆ ˆ

ˆ ˆ .

q

q

s int

q imp p q q q R
p q

s int

q imp p q q q R
p q







 
     
 

 
      
 





n E E E n E

n H H H n H

             (2.180)

The new terms with respect to the PEC case are the internal fields q

intE  and q

intH , defined as 
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where it should be noted that we have stipulated the same azimuthal and longitudinal 
dependence of fields outside and inside the cylinders in anticipation of the tangential fields 
continuity requirement. To tackle this problem, we employ the same methods as for the PEC 
case but, unfortunately, the TM and TE fields are not decoupled any more! This is a 
consequence of transverse inhomogeneity, causing the currents induced on the cylinder to 
destroy the pure TM or TE character of the field, even though impressed fields may be 
composed of only a single type of modes. This is not true only if the sole excited mode in the 
cavity is the 0m   wave, since it is the only mode constant in the longitudinal direction, 
implying that no TE modes can be produced by its scattering since there exists no TE mode 
with constant longitudinal dependence. Otherwise, the computational burden increases, as 
already explained, since then one has to calculate cross-coupling amplitudes. 

Here we shall be dealing with the scattering of an 0m  mode, since in most practical cases 
it is the only one propagating, and carrying out the analysis under the assumption that it is 
the only mode scattering off a dielectric post in the cavity yields accurate results (of course, 
provided the height of the PPW and permittivity of the loading medium are such that higher-
order modes are sufficiently suppressed at the frequency of interest).  For the case when 
modes 0m   are propagating, the analysis is more complex due to the aforementioned 
mode coupling, and is addressed in detail in Appendix B. 

We assume that only the 0m   mode is injected into the cavity, as would be, e.g., the case if 
we were to use a standard coaxial transition to fire-up the PPW. In addition, both PEC and 
dielectric posts cohabit the PPW. Then, enforcing the continuity of tangential H-fields, we 
can write down the system  
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To reduce the system further, we use the identity  ˆ ˆˆ ˆ ˆ
qq q n     n z n z z  and the 

orthogonality of azimuthal as well as longitudinal harmonics to obtain 
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where  
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Note that the “only” difference between the PEC and the dielectric post case is the presence 
of the scattered term, which becomes identically zero when    , as expected.  

It is a simple matter of dividing  (2.183) by    2 ' '

,0r t qH k a  in transiting to the final form of 

the scattering linear system obtained from the tangential H-field continuity:   
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with the coefficients defined as 
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Alternatively, we could have enforced the electric field continuity, which would result in  

the system 
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with 
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In fact, we opt for the latter system, since its particular form involves the calculation of 
cylindrical functions, as opposed to their derivatives in (2.185), since calculating derivatives 
implies, in view of the cylindrical functions recurrence relation 

       1 1

1
,

2
w n n nd Z w Z w Z w      (2.188) 

differences of two Bessel/Hankel functions. Hence, writing down the self-consistency 
conditions for all the posts, both PEC and dielectric ones, we can cast the complete linear 
system into a matrix representation 

             ' '' 'T A Bm m mm
     ,               (2.189) 

the vector  ' '
A Bm m  containing both the scattering and absorption coefficients (the term 

“absorption” indicating trapping of the field inside a dielectric post).  

Therefore, for sufficient accuracy in cases when dielectric posts are present, it is enough to 
consider only the dielectric-post scattering of the 0m   mode, whereas the higher-order 
modes may be considered only in the PEC post scattering. However, if the geometry is such 
that higher-order modes are propagating, or have significant amplitudes, then the modal 
coupling must be properly taken into account. Since the procedure is extremely tedious and 
rarely necessary in practice, we shall not discuss it further.  

 

Layered medium post-scattering 

If now we are interested in post-scattering when the PPW is loaded with a layered 
dielectric, we have to start over from the boundary condition on posts, and modify both the 
Green’s dyadic to (2.131),  as well as the scattered fields, which should read 
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 ,   (2.190)

for fields scattered off a PEC post, and  
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                                    (2.191)

for fields scattered off a dielectric post. Note that now the TE modes have a  1/ j z  

factor instead of 21/ k . This was chosen so to enable simpler application of the longitudinal 
functions orthogonality in the derivation of the scattering-amplitude linear system, which 
holds under the weighted scalar product. As will be evident shortly, this choice is rather 
natural having in mind the general form of the impressed TE field 
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                         (2.192)
where upon applying  the Gegenbauer addition theorem to the scalar potential, one obtains 
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Hence, as before, the most convenient choice of the scattered-field representation is the 
exact same functional form of the impressed field. One can easily show the scattered fields 
(2.190) and (2.191) satisfy the Helmholtz vector equations and, in addition, the following 
useful relations 
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Then, repeating the steps followed in the derivation of the single-layer linear systems, we 
arrive at systems of the same form as (2.179)   
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for TM fields, and for TE fields 
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It should be noted that the complexity of the self-consistency conditions does not increase 
in comparison to single-layer SIW devices, if layered media are present.  

Unfortunately, dielectric-post scattering complicates the analysis tremendously due to 
mode-coupling induced by longitudinal inhomogeneity. More precisely, a general dielectric 
post may be composed of an arbitrary number of layers of arbitrary thickness. Hence, the 
longitudinal dependence of fields inside such a post will generally be drastically different 
than the one of fields outside, with the implication that even though the field impinging on 
such a post may be a pure mode m , all modes will be scattered back. The extent to which a 
given mode t  will be excited is determined primarily by the scalar product between the 
longitudinal functions outside and inside a post. Of course, a well-designed device will 
prevent the propagation of such modes, but the phase-shift and scattering amplitude of a 
dielectric post are now not easily controllable due to the complexity of its field distribution; 
these kinds of devices are, to the author’s knowledge, not used in practice.  

2.2.2 Let there be light – exciting the siw 

 While exposing the formalism used to evaluate electromagnetic fields  in internal 
regions of an SIW-type device, we have been constantly referring to the fields due to 
impressed sources. However, we have not referred to any specific excitation, for which we 
amend in this subsection. We will deal with the most common excitations, their 
mathematical models and the extent of their validity, focusing primarily on the calculation 
of excitation amplitudes. The discussion on the extraction of port parameters from fields is 
relegated to after we will have discussed the slot admittance calculation in subsection 2.5 

Now, as is evident from the vast body of work on SIW devices, the most common feeds used 
to inject power are the coaxial transition (usually of SMA kind), horn antennas/waveguides, 
and slot transitions. This should come as no surprise since the operational band, power-
handling capabilities, and ease of manufacturing of said feeds are superb. Additionally, 
microstrip lines can be used as feeds as well, since the guided field profile matches well the 
one guided in an SIW [1], resulting in respectable matching.  
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Hence, if the analysis is to be of any practical use, realistic models of feeds have to be 
included, and the port parameters easily obtainable. With this in mind, we opt for the 
waveguide-port model of feeds, choosing to approximate our feeds as equivalent magnetic 
currents existing over a surface corresponding to the feed aperture. Such models lead to 
unambiguous definition of port-parameters and hold over a wide range of frequencies, as 
opposed to lumped or discrete port models. Firstly we shall apply this principle to the 
coaxial transition. 

 

Coaxial port 

Figure 2.14 shows the layout of a generic coaxial port model. It consists of a central 

conductor of radius 
ina  protruding through a plate, usually the bottom one, and is 

surrounded by an annulus of negative unit-amplitude magnetic current flowing in the 
c   

direction, and extending from 
ina  to 

outa . Essentially, stipulating so enforces that a unit 

magnetic current excites the guide regardless of the frequency, the current being related to 
the fundamental mode of the coaxial line as  
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 .              (2.197) 

This approximation will hold well as long as the operating frequency is sufficiently below 
the cut-off frequency of the second mode of the coaxial line. Since the current is rotationally 
invariant, and is concentrated just above or below a metal plate, one expects that the field 
launched into a PPW will also possess rotational invariance; hence, it will not contain any 
TE modes. 

Figure 2.14 Coaxial port model used in the analysis 

    

The analytic, closed-form expression for the field excitation amplitude is  
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            (2.198) 

Additionally, it can be easily shown that ''

, , 0q r m  . Another benefit of having chosen the 

current distribution as in (2.197) is that the self-admittance of a coaxial port can be 
expressed in closed form, the admittance between ports being defined as 
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Then, the self-admittance is 
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            (2.200) 

'

m being the m-th mode coefficient depending on the stratification and coaxial current 

magnitude. The first term describes the direct PPW-wave self-interaction, while the second 
and third terms describe the post-scattering self-interaction.  

 

Waveguide port 

The second common type of excitation used to inject power into SIW devices is the 
waveguide transition, or as we shall refer to it here, the waveguide port.  Due to its ability 
to handle large power and provide good matching, it is the excitation of choice for many an 
application. Now, the standard procedure for modelling such a port relies on the use of the 
equivalence principle, and is quite similar to the one used to model the coaxial port. To be 
more specific, consider the junction between the feeding rectangular guide and the SIW 
guide, as shown in the following figure. 
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Figure 2.15 Junction between a rectangular and an SIW guide 

 

  

Firstly, we enforce the dominant TE01 mode to impinge onto the junction, since in practice 
this is the most common case. Its form is given in the local coordinate system of the port by  
[80] 

      01 01ˆ ˆsin , sin ,
TE TE

e hC v C v
W W

    
        

   
e r u h r v   (2.201) 

and is normalized to carry unit power as   

    01 01
*

ˆ d 1
TE TE

P

S   e r h r n  . (2.202)

Now, as is done, e.g., in problems pertaining to aperture radiation into free space, one could 
apply the equivalence principle, and envelop the guide by an enclosing surface, 
subsequently placing distributing magnetic and electric currents all over it, if one wishes to 
rigorously take into account the diffraction at the guide termination. However, in practice 
the guide is designed so as to minimize this diffraction, and the SIW confines the field 
strongly, further preventing backscattering. Hence, neglecting the 
diffraction/backscattering does not introduce significant errors. Then, whenever these 
assumptions hold, we can apply the equivalence principle approximately, as shown in 
Figure 2.15, and close the guide aperture by a PEC plate, shorting out the equivalent electric 
current, and leaving solely the magnetic ones. We should have, in principle, placed a PEC 
plate extending across the whole plane in which the aperture lies, but since the post fences 
keep the field focused in the guide, we may use a truncated plate, implying we do not have 
to consider any scattering phenomena outside the SIW guide. Hence, the equivalent 
magnetic current may be simply related to the feeding electric field as 
  

    01 ˆ ˆ2 sin ,
TE

wg C v
W

 
    

 
M r e r n v                                   (2.203)

where the constant C can be chosen to make the current unit in amplitude. However, the 
PEC lid used does not conform to the cylindrical coordinate system, which is used, and this 
might significantly complicate the analysis. For example, when calculating field impressed 
by the waveguide port, one should include the effect of scattering from the PEC lid. As its  
geometry is most naturally expressed in rectangular coordinates, and the Green’s function 
is expressed in cylindrical coordinates, an awkward procedure must be effected where the 
lid is first discretized and the scattering problem  numerically solved. However, a trick, 
devised by Arnieri and Amendola [15], can be applied, whereby one replaces the lid by a 

fence of tightly spaced small vertical posts of radius smaller than, say, 0.05 g . This 

u

v

n n

v

M
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arrangement effectively emulates the continuous metallization of a PEC lid, and the 
scattering problem is dramatically easier to solve.  

2.2.3 The exterior problem 

 So far, we have discussed the internal problem – scattering inside a PPW, possibly 
in the presence of PEC or dielectric posts. However, as mentioned in the introductory 
subsections of this chapter, a large portion of SIW devices belong to the class of antennas; 
these are, most commonly, in the subclass of slot arrays. It is why the analysis then must 
include radiation and scattering in open half-spaces if one wishes to be able to consider such 
scenarios. As will be shown in following sections, slots can be analyzed successfully and 
accurately using the MoM formalism (see for example [90], [91] etc.), whereby the effect of 
slots is modelled using the equivalent currents concept. The slots connecting a PPW and a 
half-space will then be modelled as magnetic currents radiating above PEC plates of infinite 
extent. To find the field they generate in the half-space, it is obvious that one must have in 
possession the pertinent Green’s function.  

It is easily found upon recalling that our preferred “flavour” of choice for the equivalence 
principle stipulates that slots, if present, are to be filled with the same material the plate in 
which they are excavated is made from. The slots are then replaced by equivalent magnetic 
and electric currents, but since the plate is a PEC, it will short out the electric currents, 
leaving only the magnetic ones. A simple application of PEC boundary  conditions then leads 
to the conclusion that the tangential magnetic fields must have a maximum (or a minimum) 
at the surface of the PEC, whereas the normal ones must be shorted out there (otherwise 
their presence at the boundary would imply the existence of tangential electric fields). This 
observation, in conjunction with the plate’s infinite extent, stipulates that the effect of 
magnetic currents is doubled. In effect, the Green’s dyadic then has the same functional 
dependence as the free-space one, save for the additional factor of 2 which comes from the 
above considerations, and is given by 

     
'

2
, '

2 '

jk

HM e

k 


 

  
 

r r

G r r 1
r r

  .             (2.204)

Of course, this form lends itself to useful approximations, e.g. the far-field approximation, 
or multipole expansion, but as far as the external problem is concerned, this completes the 
analytical part. If scatterers are present in the half-space, they too can be modelled within 
the MoM framework, or if high-frequency regime conditions apply, physical theory of 
diffraction [92] or the geometrical theory of diffraction [93] may be applied in various 
forms. Moreover, if the plate is made from a material having finite conductivity, it can still 
be modelled analytically using the concept of effective magnetic currents as proposed in 
[18] and analytic Green’s functions for such cases are available. However, the finite 
conductivity case is outside the scope of this thesis and will not be discussed further.   
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2.3  The slot thickens – mixing mode matching and the 
method of moments 

 

 Up to this point, we have covered a fair amount of ground, having established the 
methods to be used in analysis of SIW devices, along with the range of structures that can 
be successfully tackled using these methods. Here we shall weave in the final patch in the 
tapestry that is the hybrid mode-matching/MoM, by actually adding the “MoM” into it.  

First, we shall repeat the formulation of the slot-problem with emphasis on, leading to a 
system of coupled integral equations. Then, we will discuss how to discretize them and turn 
into linear systems using the well-known framework of the method of moments, at the same 
time adopting a bird’s eye view of the sub-problems (post-scattered fields, impressed fields, 
slot-scattered fields) and an ant-view of each sub-problem with focus on the crucial details. 
After this exposition, we shall comment on the properties of said linear systems in 
connection with the problem geometry, which will lead us to the appropriate choice of 
algorithm for the solution. Finally, we will discuss the approximations used in MoM matrix 
filling which render the analysis computationally efficient, and present some rule-of-thumb 
criteria for choosing the sufficient number of basis functions and range of interactions 
necessary for a given accuracy.  

2.3.1 From slots to equivalent currents 

In the introductory section of this chapter, we discussed how to reexpress the fairly complex 
problem of finding the EM fields in a stacked-PPWs geometry as a “simpler” one where 
formally decoupled regions are connected by equivalent currents. At this point, we repeat 
the most important results.  

Firstly, upon applying the equivalence principle, each slot is replaced by two equivalent 
currents – one above the slot, flowing in the direction of its largest dimension, the second 
one being of the exact same amplitude and functional form, but of opposite direction; this 
will guarantee the continuity of tangential electric fields. As mentioned before, we consider 
the slots as thin, meaning one of their dimensions is smaller than 0.1 . This is the most 
common case in practice because they are significantly easier to control than wide ones, as 
their radiation pattern and coupling properties are well-researched (see, e.g., [94]). If wide 
slots are present, one must then include the functional dependence in the “other” direction. 

Now comes the question of how to model the current functional dependence. Over the years, 
a large number of basis functions have been devised, ranging from triangular [95], 
quadrilateral, piecewise-continuous, edge-singular [96] etc., each suitable to a specific 
problem, some more flexible than the others. In our case, the currents will be distributed on 
a rectangular surface, flowing along the direction of the maximum chord, i.e. the slot length, 
which we shall refer to as the longitudinal direction. As the restriction to thin slots dictates 
that the change of the current in the transverse direction (along the width) is negligible, i.e. 
can be considered constant, we can use basis functions having dependence solely in the 
longitudinal direction. For instance, we might use piecewise-constant functions, or even 
pulse basis functions. However, owing to their discontinuity, they do not satisfy the charge-
current conservation, potentially introducing spurious charges and currents, and lead to 
more cumbersome expressions for slot admittance, as will be evident later on. Hence, we 
shall adopt entire-domain functions of sine dependence in a slot’s local coordinate system, 
given by 
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Figure 2.16 Slot coordinates and characteristic lengths; a colour plot of the first-order 
basis function current distribution (The amplitude is normalized with respect to the 
maximum; the warmest colour denotes the largest amplitude) 

  
 

,q qW L  being the width and length of slot q , respectively. The current, then, is represented 

as 

    , , ,q q n q n q q

n

V u vM b .                    (2.206) 

It may seem this choice is a bit out-of-the-blue, but the motivation behind is quite simple – 
the magnetic currents are related to the electric fields, generated at obstacles, as simple 

rotations with respect to the obstacle normal, i.e.       ˆ
i i M r E r n . In practice, when 

slots are used as radiators or couplers, one attempts to excite the slots into resonance, the 
lowest one occurring when the slots are approximately half-wavelength long. It is then 
reasonable to expect that the electric field across the slot will be almost sinusoidal (this can 
be also reasoned if one thinks of a slot as a narrow rectangular waveguide). Hence, a basis 
having the same functional form as the cross-sectional TE0n modes of a waveguide having 
the same dimensions as the slot (n denoting the order of the harmonic in u ), is very 
convenient. Moreover, the analytic properties of this particular basis facilitates the 
admittance calculation, since two out of four integrals involved in its expression can be 
evaluated analytically [97]. In addition, the magnetic dipole moment, if needed, can be 
simply expressed in closed form upon integrating the current over the slot surface as  

   
 

,

1 1
n

q q n q

n

V L
n

 
m   .                      (2.207) 

Equipped with a ready basis for current representation, we can tackle the slot-problem. 
Firstly, we shall reformulate the boundary conditions as a set of coupled integral equations. 
Since the tangential magnetic field has to be continuous across each slot, i.e.  

 

      1
ˆ ˆ ˆ ˆTotal Total

w q w q    n H r n n H r n  ,                          (2.208) 

implying that the total tangential magnetic field across each point of the surface of slot q  , 

created by both impressed sources as well as secondary ones (scatterers), in the region 
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denoted by index w , being either a PPW or a half-space, has to be equal to the total 

tangential magnetic field across each point of the surface of slot q  in the region 1w . Now, 

the total field in a given region is the sum of several contributions 
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                       (2.209) 

where the latter two terms are, respectively, the post-scattered and slot-scattered fields. Of 
course, if the region is a half-space, there are no post-scattered fields, though there may exist 
fields scattered from an obstacle. As the post-scattered field is approximated by a finite 
number of modes, so will the slot-scattered field be approximated as the contribution from 
a finite number of current basis functions. In order to find the slot-scattering amplitudes, 
i.e. the unknown current expansion coefficients, (2.208) can be converted to a linear system. 
This idea goes a long way back to works of Kontorovich, Krylov, Akilov and Hilbert, among 
many others, whereas its specific application to electromagnetic problems is credited to 
Harrington [98]. It rests on the premise that by projecting a system such as (2.208) onto a 
basis of choice using a suitably defined scalar product, one effectively “knocks out” the 
functional dependence of all the partial fields involved across the region where a condition 
such as (2.208) holds. In other words, by such a procedure, one transits from an equation 
which should hold at infinitely many points to an “averaged” equation which holds in either 
approximate or exact sense over the problem domain. To put this on a firmer mathematical 
basis, let us first define the following linear operator 

                   , ' ' d ' ,
k SIW

k kj  L M G r r M r r  

which acts on a magnetic current M to produce the magnetic field in the waveguide k . Here 
the kernel of this transformation is not the no-posts PPW dyadic Green’s function we sought 
and derived in the previous section, but includes the effect of scattering off of posts as well. 
The current may be either an impressed one, or an induced one. Our geometry consists of 
waveguides stacked on top of each other, a waveguide indexed n  being bounded from 

below by a plate indexed k  and from above by a plate indexed 1k  . The convention for 
indexing currents and fields is the following – a magnetic field existing in the 
waveguide/region k  is indexed by k . A current existing on the lower plate of the 

waveguide k is denoted by index k , whereas if a current is localized to the upper plate of 

the waveguide k , it is denoted by index 1k  . Then, by explicitly separating the fields into 
impressed ones and induced ones (induced at slots, in our case), we can rewrite the 
boundary condition (2.208) on the plate k  as 

                     1 1 1 1 1ˆ ˆ ˆ ˆ .
k k k k k k k k k k

imp imp

                    
       

z L M L M L M L M z z H H z  

  (2.210) 

Unknown currents at each slot are expanded as (2.206) and plugged into (2.210), enforced 
across each slot. This constitutes a set of coupled integral equations with current amplitudes 

,q nV  as unknowns. To transit to a system of linear equations, we can choose a set of so-called 

test functions, their spatial support being a part or the whole domain of the problem. The 
testing functions should cover the domains of all basis functions, lest one ends with an 
underspecified linear system, as will be obvious in a few moments. Then, we perform a 
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scalar product of the system (2.210) with each function in this set, the scalar product, in our 
case, being defined as the complex-conjugate product    

    
*

, d
S

 f g f r g r r  .  (2.211) 

Doing so leads to linear system of the general form      

 YV I  , (2.212)                            

with the Y  being the admittance matrix, a general entry of which has the form                   
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  (2.213) 

where the weighting function w  is defined over a slot, and the Green’s dyadics include the 
effect of post-scattering. The admittance itself can be interpreted as the reaction [99], 
interaction “energy” between two unit-strength magnetic currents [100], [101], or as a 
weighted projection between the basis functions, where the Green’s function plays the role 
of the weighting function. 

Different choices of testing functions lead to different accuracy, convergence of solution and 
computational effort, which are almost always in trade-off – one can have at most two 
satisfactory properties. Therefore, a discussion of bases is absolutely necessary to justify 
our choice.  

The simplest choice of testing functions is the point-pulse basis , whereby one performs 

scalar products with a train of weighted Dirac delta functions  ˆ
q q i q i

i

w a  u r r  

Intuitively, this has the effect of relaxing the boundary condition in such a way that it holds 
at finitely many points over the given problem region. The basis has the advantage of 
making the scalar product implied in (2.213) trivial, lifting the computational burden of 
having to use numerical integration schemes in the MoM matrix filling, which is usually the 
bottleneck of the method.  However, the point-matching scheme’s greatest strength is also 
its greatest weakness because it rests on relaxing the boundary conditions, which usually 
leads to poorer accuracy compared to results obtained with other bases. Other options 
include a plethora of basis functions such as piecewise-constant, piecewise sinusoidal, 
triangular etc., which we will not delve on too exhaustively now, but an interested reader 
may refer to Gibson [50] for a concise summary of the most common ones.  

The triangular base offers flexibility since it can effectively be used to model shapes of 
large variety. However, it leads to a heavier admittance calculation due to subdivision of the 
region where it is applied, and requires a routine for generating this subdivision. It is very 
convenient for geometries having a more complex/irregular layout. 

The piecewise-sine base has the ability to reconstruct the current distributions with only 
a few subsections over the slot, provided the slots are excited around resonance. In addition, 
its analytic properties allow simplifications in calculating the admittance matrix entries. 
Though by its nature it is a piecewise expansion, the subsectional basis functions and their 
derivatives are continuous, which is of paramount importance in evaluating the admittance 
matrix entries.  
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We will, however, opt for the same basis the current is expanded in. This then results in the 
so-called Galerkin weighting, which has the great advantage of leading to symmetric 
matrices; this reduces the computational effort since one does need to compute all the 
entries – computing the diagonal elements and the upper or lower triangle is necessary, the 
rest of the entries are obtained by symmetry. Unfortunately, the computation of entries in 
general requires the use of numerical integration schemes, such as the Gauss quadrature in 
its many variants, although approximate analytical spectral integrations based on the 
steepest-descent-path method [102], [22] can be used, vastly increasing the overall 
efficiency of the method. It should be noted, though, that symmetric matrices are obtained 
only when the field operator is self-adjoint, which is, in fact, our case.  

Hence, the set of weighting functions is the set   ,q nb . The general admittance matrix entry, 

defined in (2.213), then assumes the form   
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where it can be seen that the total admittance is the sum of admittances in adjacent regions 
where the basis functions exist. For example, if one had a single PPW radiating into the 
upper half-space by way of slots etched on the top plate, the admittance between two basis 
functions would be the sum of the admittance due to the PPW wave  interaction and the 
half-space wave interaction between the respective functions.  

The vector V contains all the coefficients of the unknown current expansions 

   1,1 1,2 1,3 1,N 2,1 2,2 2,3 2,N ,QNV V V V V V V V V        V   

Q  being the total number of slots in the structure, N  being the number of basis functions 

used to represent the current on each slot. Finally, the vector I , referred to from now on as 
the excitation vector, has entries of the form    
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In a typical SIW geometry, the interactions between basis functions are such that the 
admittance matrix takes on the block form 
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where a generic sub-matrix 
 

,
Y

p

q r
collects admittances between the slots on interface q

(“interface” denoting the metal plate where the slots are situated) and interface r , the 
interactions taking place in region p . The grand admittance matrix has a tridiagonal 

structure owing up to the interactions taking place only between adjacent interfaces; the 

diagonal sub-matrices   
    1

, ,
Y Y

k k

k k k k


  collect admittances of slots on the same interface but 

due to interactions mediated in different regions, whereas the off-diagonal sub-matrices 
 

,
Y

u

v w
  collect the negative of admittances between slots on adjacent interfaces ,v w  due to 

wave interaction in the region u . Hence, the only possible combinations of sub-matrix 

indexes are        , , 1, , , 1 , 1, 1k k k k k k k k        . It should be noted that 
 0

1,1
Y and 

 1

1, 1
Y

N

N N



 
 contain half-space admittances of the form     

        

'

HS

,s ,Y ' d ' d Y ,
k

l l k k s l s

S S

j
 

     
  

 b r G b r r r                  (2.217) 

where the Green’s dyadic is of the form (2.204).  

 In sum, if one wishes to effectively analyze slots in metal plates, the method-of-
moments formalism can be applied in a straightforward manner to SIW-type problems – the 
slots can be filled by the same material the plates in which they are excavated are made 
from, and equivalent magnetic currents can be placed on their respective surfaces. Then the 
continuity of tangential electric and magnetic fields is stipulated across each slot; the 
continuity of the electric field leads to the currents, placed above and below each slot, being 
equal in magnitude and functional dependence, but opposite in direction. The continuity of 
the magnetic field leads to a system of coupled integral equations, which can be 
approximately solved by discretization. First, the unknown currents are chosen to be 
represented in an entire-domain sine basis. Then, following the method of Petrov and 
Galerkin, the system of integral equations is projected onto that very same basis the 
currents are expanded in with the aid of a suitably chosen scalar product. This results in a 
symmetric linear system relating the vector containing unknown currents amplitudes and 
the so-called excitation vector by a linear transformation, effected by the generalized 
admittance matrix, which collects the reactions (in the sense of Rumsey) between all the 
basis functions. In a typical problem, such a matrix contains a large number of entries (on 
the order of 104), and the calculation of each entry usually requires a numerical integration. 
Hence, the filling of this matrix will be the bottleneck of the method, its efficiency singularly 
depending on one’s ability to compute the entries in an efficient manner. This paramount 
problem is dealt with in the next subsection.  

2.3.2 Admittance calculation 

The admittances defined in (2.214) and (2.217) can be computed using a variety of 
methods, e.g. using spectral-domain integration, both numerically by suitably deforming the 
Fourier inverse contours and sampling, and using the steepest-descent-path integration. On 
the other hand, integration in spatial domain can be convenient in some cases where higher 
precision is necessary (for example, when calculating the admittance of closely-spaced 
slots), mainly resting on one of the many variants of the Gaussian quadrature [103]. In 
addition, one has to evaluate the self-admittances (the interaction of a basis function with 
itself), which are singular integrals due to the singularity of the Green’s functions involved. 
There one needs to be quite careful since improper handling of such integrals may lead to 
inaccurate and plain nonsensical results.  
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In this subsection we shall deal with all the peculiarities of calculating the admittances, 
proposing the most elegant, efficient, or straight-forward way of doing so.  

 

A. SIW ADMITTANCE 

The most common entry in the admittance matrix is the internal-problem admittance, 
defined by the integral 

        

'

,s ,Y ' d ' d Y ,
kSIW

l l k k s l s

S S

j
 

      
  

 b r G b r r r              (2.218)

which, as mentioned before, contains both the direct PPW interaction, and the post-
scattered wave interaction, and therefore can be reexpressed as 

          , , ,

,s , ,Y d d Y YSIW s PPW s Posts s PPW Posts

l l l l s l s

S S

            b r Η r r b r Η r Η r r

                                  (2.219) 

In order to calculate the direct PPW admittance, given by 

       ,Y , , ' ', ' d 'd ' d d ,PPW PPW

l s l s

S s

u v j u v u v u v
 
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 

 b G r r b   (2.220)

we resort to the procedure used by Albani in [104], whereby a significant analytical 
simplification is obtained upon using the following facts: the currents are transverse, û - 

directed, and '  since the admittance depends on the distance between the slots 
through the Green’s dyadic, making it possible to express the complicated derivatives in the 
Green’s dyadic as derivatives in / 'u u . Moreover, a two-fold application of the one-
dimensional Green’s first theorem (i.e. partial integration) moves the derivatives from the 
Green’s function onto basis functions, simplifying the integral to 
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                      (2.221) 

where the first term, dependent on the scalar product between the current unit vectors, 
corresponds to the admittance due to magnetic current interaction, akin to Friis formula, 
where the mismatch due to the tilt between the respective radiation maxima is taken into 
account. The second term can be interpreted as the interaction between magnetic charges, 
or a first-order correction to the admittance involving the derivatives of the currents. Note 
that (2.221) is expressed solely in scalar form (save for the ˆ ˆ 'uu scalar product in the first 
term), alleviating the need to perform tedious scalar products and differentiating the dyadic 
Green’s function directly, dyad by dyad. However, the second term contains uncommon 
terms, the most “suspicious” one being the inverse-Laplacian delta term. Fortunately, 
(2.221) can be simplified further upon taking a closer look to the double derivative of the 

TE S-potential ''

'z z S   which, upon exhibiting it in Fourier series-integral form [64, Sec. 5.2 

b)] 
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                                  (2.222)

( je   in the lower integration limit indicating we bypass the logarithmic branch cut 

singularity at 0tk  below the real line) and interchanging the differential and integral 

operators, can be expressed as 
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                            (2.223)
Now, from the above discussion it should be clear that in order to find a more explicit form 
of double derivative term (2.222), one needs an explicit expression for the double derivative 

of the longitudinal transmission-line Green’s function "

zig . This can be obtained using the 

symmetry relations (2.78) in the defining equation (2.76), yielding 

      " "

' , ' , ' 'z z z z zd d g z z g z z z z     , (2.224) 

where "

zg   is the  “dual” TE Green’s function – it is related to the TE admittance Green’s 

function  " , 'Y z z  as  

    " ", ' , 'z

z

g z z j Y z z



   , (2.225) 

and interpreted as the transmission-line modal current at z  due to a voltage of moment 

 /zij   at 'z , satisfying "

0,
0z z z h

d g


 . Then, using (2.224) in (2.223), along with the 

fact that 
" 'S S  in the single-layer case,  the PPW admittance simplifies greatly to 
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  u u r r
    (2.226)

where the / 'u u  differential operator acts on basis functions (by virtue of partial 
integration). Hence, we have an expression involving only one scalar Green’s function, 
additionally relieving the computational burden since there is no need to compute the TE 
scalar potentials as in (2.221).  

In the stratified medium case, however, a simplified expression akin to (2.226) cannot be 
obtained since the spectrum of the dual TE Green’s function and the TM Green’s function do 
not coincide any more, and a more complicated expression replaces the admittance. The 
derivation proceeds along the same lines as for the single-layer case, though care must be 
exercised due to appearance of position-dependent material parameters.  
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First, reexpressing the derivatives present in Green’s dyadic in terms of derivatives in / 'u u  
and applying a two-fold partial integration, we arrive at the starting expression
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            (2.227) 

Again, we have to reexpress the TE potential double derivative in terms of other related 
functions using symmetry relations and transmission-line equations, amounting to (see the 
appendix for a detailed derivation) 
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where the dual TE potential can be derived in the same manner as the “regular” potentials, 
and is given by 
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The longitudinal modal “currents” "

ii satisfy " 0
PEC

z i z z
d i


 at PEC boundaries and continuity 

requirements across layer junctions  
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n  indexing the junction across which the continuity is enforced and "

,i nY being the modal TE 

admittance in the layer n . The spectrum of this function coincides with the TE modal 
spectrum, which is beneficial from the computational point of view since one needs not find 
the pertinent propagation constants, being the same as for the TE modes.  

It should be noted that the last term of (2.228) cancels the corresponding delta-term in the 
charge-coupling integral of (2.227), leading to the regularized expression 
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                      (2.230)
It is evident the admittance calculation in this case is computationally more demanding than 
the single-layer case, since the dual functions must be calculated in addition to the ordinary 
potentials.  

Regardless, the power of the Schwinger-Marcuvitz-Felsen approach is finally evident – the 
admittance expressions contain only scalar functions, easily constructed by the 
characteristic Green’s function method, both in single-layer and stratified-layer scenarios. 
Moreover, the potentials possess integrable logarithmic singularities, owing up to the 
representation in terms of Hankel functions. This fact facilitates the self-admittance 
calculation significantly, since the singular integrals can be simply cast into a numerically 
convenient form by simple change of variables; the singularities are “pushed” towards the 
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lower limits of integrals, which are then calculated by Gaussian quadrature. Remarkably, 
the SMF formalism, in addition to providing a conceptually familiar framework based on the 
transmission-line formalism, is self-consistent as well – the inverse-operator formalism, 
applied to the derivation of the Green’s dyadic, facilitates the identification and cancellation 
of discontinuous terms, a characteristic not inherent to alternative approaches (see e.g. 
[105] for a discussion on the discontinuities of DGFs). This renders any MoM method using 
the SMF Green’s dyadics transparent and simpler. 

 

 

 B. SLOT-POST ADMITTANCE 

 In addition to the direct PPW interaction between a pair of slots/basis functions, the 
energy transfer due to scattering off of posts takes place in an SIW-type device. The 
admittance due to this interaction can be generally expressed as 

       ,Y dPosts Posts

l s l s b r H r r   ,              (2.231) 

Posts

sH being the magnetic field created when the field generated by the current 
sb  scatters 

off of all the posts toward some point r . But, this is just the field one can find using the 
methods presented in the subsection 2.2.1.8., its form being 
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scattering amplitudes '/ ''A  being solutions to linear systems 
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  A Ω A Ω  . 

In more detail, for each mode m  the matrix T m  is constructed, and is common to 
slots bN N  

linear systems, 
slots bN N  being the total number of basis functions assigned to all the slots of 

a given PPW. These systems will differ in the excitation vector, which collects the amplitudes 

of the modes  ,m n  excited by a slot basis function 
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           (2.233)

the coefficients    being the modal coefficients of the pertinent Green’s dyadic. Therefore, 

they can be solved in parallel, significantly speeding-up the analysis.   

Once the amplitudes '/ ''A are known, the slot-post admittance can be calculated by 
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b r M ρ ρ N ρ ρ r

b r M ρ ρ r b r N ρ ρ r

 

                      (2.234)
where the scalar product between the basis functions and field modes have to be performed. 

However, these integrals were performed in the process of finding the amplitudes '/ ''A  and, 
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in fact, are exactly the '/ ''

; , ,f m r qI  coefficients! Therefore, the slot-post admittance can be 

elegantly calculated as 

   ' ' ' ' " ''

, ; ,0, ; ,0, ; , , ; ,m, ; , , ; ,m,

, 0

YPosts

l s s q n l q n s q m n l q n s q m n l q n

q n m

A I A I A I


 
    

 
           (2.235) 

 

C. HALF-SPACE ADMITTANCE 

 If the SIW device of interest radiates into a half-space bounded by the 
uppermost/lowermost PEC plate closing the device, slot radiators will interact by half-space 
radiation, and at the radiating interface an additional admittance term accounting for it will 
appear  

         HS

,Y , , ' ', ' d 'd ' d dHS

l s l lu v u v u v u v    b G r r b    ,      (2.236)

the Green’s dyadic being the one of  the pertinent half-space, defined by (2.204). As such, it 
is amenable to various well-known approximate but efficient methods based on either the 
far-field approximation of the scalar Green’s function, or a plethora of spectral integration 
methods, numerical or closed form based on the steepest-descent-path integration ( see e.g. 
[102]). Hence, we shall not discuss it further since it would not add any new insight.  

 

2.3.3 The excitation vector of the MoM system 

 The elements of the excitation vector, defined by(2.215), can be conveniently 
calculated by a procedure analogous to the one we used to calculate the slot admittance. 
First, we recall that a generic element of the excitation vector is composed of sub-elements 

   

   

      ; ;

,

i

l l imp

i PPW i Posts

l imp imp

PPW Posts

l l

i d

d

i i

 

 

  

  





b r H r r

b r H r H r r                 (2.237) 

the PPW contribution being    

       , ' ' d ' d
PPW

PPW

l l ii    b r G r r M r r r  , (2.238) 

and the posts-contribution is 

      ;Posts dPosts i

l l impi r  b H r r  .                 (2.239)

(Note that the subscripts denoting the region where the fields are calculated are dropped.)
;Postsi

impH is found in the same way as the (2.232), the only difference being in the driving terms 

which are, in this case 

      ' '

; , , , ' ; ' ' d 'i m r q r m q iI z   M ρ ρ M r r  

      '' ''

; , , , ' ; ' ' d 'i m r q r m q iI z   N ρ ρ M r r                             (2.240)

Therefore, similar to the slot-post admittance (2.235), the Posts

li  can be calculated as       
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  ' ' ' ' " ''

; ,0, ; ,0, ; , , ; ,m, ; , , ; ,m,

, 0

Posts

l l q n i q n l q m n i q n l q m n i q n

q n m

i A I A I A I


 
    

 
    (2.241) 

 

2.3.4 Calculating the input/output parameters 

 A poor antenna engineer, struck by the terrible misfortune of having to use an ad-
hoc electromagnetic code, is not interested in all the fancy mathematics behind it or the 
optimal algorithms used. Of primary concern to him is whether the antenna/device in 
question has acceptable return loss, and whether the realized gain of, say, an SIW slot array 
is large enough. We have already presented how to compute the port admittances in the 
absence of slots. Here we present the most convenient ways to do so when they are present, 
within the framework used to compute the fields.  

 The admittance between ports i  and j  is defined, as per usual, by the projection 

integral 

     ,

0

1
Y .

j i

jPort Port

j i j i

i j i V

I
d

VV V
 


   M r H r  

The port i  magnetic field has two canonical contributions – the SIW-wave in the absence of 

slots, and the slot-scattered field, i.e. ; ;Port Port SIW Port Slots

i i i

   H H H . Therefore, the 

admittance can be decomposed in the same manner.  The SIW field ;Port SIW

i


H  is composed 

of the direct PPW-wave due to port i   and the post-scattered waves found by methods 
presented in section 2.2.1. It will be different from zero only if the ports are located in the 
same waveguide. The slot-scattered field is the field scattered by slots towards port j  when 

port i  is excited and all the other are shorted. It is composed of the sum of partial fields 
radiated by all the basis functions on slots in the waveguide where the port j  is located 

     ;Port Slots Port i SIW

i s s

s

  H H  ,              (2.242)

The excitation amplitude of each basis function is denoted by Port i

s
  , obtained as the 

solution of the MoM problem when port i  is excited and the rest are shorted. The field SIW

sH

, on the other hand, is given by SIW PPW Posts

s s s H H H , where the first term gives rise to the 

admittance ;Ys PPW

j

 , of the same form as ,YPPW

j i but with the basis function 
sb  as  the exciting 

current instead of the current of port i . The field Posts

sH has already been computed, and if 

its form is plugged into the above admittance expression, we finally obtain the slot-post 
admittance 

    ' ' ' ' '' ''

, ; 0, , ; 0, , ; , , ; , , ; , , ; , ,

,

1
YSlots Posts Port i

j i s s n p j n p s m n p j m n p s m n p j m n p

s p n mi j

A I A I A I
VV

 

     



 
    

 
    ,            

            (2.243) 

the total admittance being 

    ; ;

, , , ,Y Y Y YPort SIW Port i s SIW s Slots Posts

j i j i s j i j i

s

v        ,                (2.244) 
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with the understanding that ,YSIW

j i is zero if ports are located in different waveguides. 

 From the above mentioned quantities, one can retrieve the input impedance, S-
parameters, the impedance matrix etc. However, in radiating problems involving slots, in 
addition to input parameters, one is interested in directivity, gain, cross-polarization levels 
and other quantities associated to the radiation pattern. The radiation pattern itself is easily 
calculated, once the magnetic current amplitudes of all the slots radiating into a given half-
space are known, by the radiation integral 

         HS HS, ' ' d ' , ' ' d ' ,n n

n

V         E r G r r M r r G r r b r r                (2.245) 

where  

  HS

2
, '

2

jkRe

k R

 
   

 
G r r 1   (2.246) 

is the half-space Green’s dyadic (R being the distance between the source and the 
observation point). In general, (2.245) is intractable in closed form, but can be significantly 
simplified upon observing that in the far zone the second term of (2.246) is of the order 

 3O R  and hence can be neglected without sacrificing accuracy in a notable manner. In 

addition, the scalar half-space Green’s function can be accurately approximated in the 
standard way  [26, p. 286] as  

  
 'cos

HSG , '
2 2

jk r rjkRe e

R r



 

 

  r r  , (2.247) 

where , ' 'r r   r r  , and   is the angle between r  and 'r . Now, in calculating the 

directivity and the associated quantities, such as the realized gain, it is necessary to compute 
the total radiated power, which can be calculated in a number of ways. The straightforward 
and, consequently, the most laborious way would be to create a dense mesh of points on a 
sphere in the far field and numerically integrate the power density (per solid angle), given 
in terms of the far-zone electric field components as 

    2 21
P , E E

2
  


   , (2.248) 

where   and  are the elevation and azimuth defined in an arbitrarily appointed spherical 

coordinate system (but usually taken to have its origin in the geometrical center of the 
considered antenna system).  However, there is a much simpler and faster way utilizing 
quantities already computed during the MoM procedure. It relies on the very definition of 
the rate of change of energy in a charge-field system composed of impressed currents 
radiating into a given medium [82, p. 11] 

    * d ,U   M r H r r   (2.249) 

whose real part is, to quote Collin, interpreted as “the work done by an impressed current 
source against the radiation reaction field, and accounts for the power loss in the medium 
and the transport of power across the surface S” (the surface S is any surface enveloping the 
impressed sources). Of course, care should be exercised with such statements, since the 
possibility of such a general interpretation of this expression for arbitrary media is 
questionable.  Now, in order to connect the impressed work (2.249) to the previously 
obtained quantities, we write it out fully 
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  (2.250) 

where use has been made of the fact that vector basis functions are real, i.e. *

n nb b  . Hence, 

the power supplied to the half-space can be quickly computed using the magnetic current 
amplitude vector and the admittance matrix. Since we are dealing with time-harmonic 

fields, it makes sense to average the supplied work over a period of oscillation   

 *1
,

2
n nt

n

U V I     (2.251) 

and since the medium is assumed to have no losses, taking the real part of (2.251) finally 
yields the total radiated power. 

 

2.4   Fast is not fast enough – speeding up the method 
even further      

 Up to this point, we have been dealing with the exposition of the formalism used, 
touching only lightly on the subject of efficiency the method provides. Here we shall 
consider the common symmetries and approximations, valid and applicable to a wide class 
of SIW-type structures, granting significant reduction of the overall computation time. 
Moreover, we shall reiterate several pragmatic, rule-of-thumb criteria for choosing the 
sufficient number of modes/basis functions guaranteeing good accuracy, while keeping the 
computation time reasonable. In addition, we shall recap the speed-up strategies mentioned 
in previous sections, along with recommended known algorithms for matrix inversion and 
numerical integration giving best results.   

 All commercial solvers, such as HFSS, CST Microwave Studio, FEKO etc. rely on  the 
discretization of the problem domain in question, i.e. the scatterers are represented by 
suitable functions existing over a part of the scatterer which approximate the true layout. 
Depending on the type of solver, either the current or the geometry itself is discretized. In 
our case, we “discretize” the currents, but since the geometry of a generic SIW consists of 
canonical cylindrical and rectangular shapes, we use entire-domain functions “covering” the 
whole objects to approximate the fields/currents. On the other hand, an MoM-based solver 
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such as FEKO meshes the surface of each cylinder and slot first using triangular patches, 
then distributing a current over each such patch. Therefore, our approach is inherently 
more efficient. Note that if the geometries considered were irregular, our approach would 
not be capable to account for the irregularity, whereas commercial solvers shine through in 
such scenarios (unless, of course, the problem is too big to be handled by the respective 
method).     

 The second forte of the method is based on the fact that integral equations which 
appear in it are solved by the Galerkin method, i.e. the testing and the basis functions belong 
to the same set. As already mentioned, this gives rise to symmetric interaction matrices, 

reducing the effort of filling the whole matrix from 2N operations (numerical integrations) 

to 2 / 2 / 2N N . It should be noted that the application of the Galerkin method is not 
sufficient to yield symmetric interaction matrices, but the original field problem expressed 
by the H-field vector differential equation must be phrased in terms of a complex-symmetric 
operator relating the field and the current [106], i.e. the Lorentz reciprocity principle must 
hold.  

 In connection to the first point, related to the discretization, the used field 
representation in terms of the angular-mode radial transmission-line representation [64, 
Sec. 3.3] is advantageous on several levels. The first and foremost advantage is the fast 
convergence of fields already at moderate distances from the source, if the device being 
investigated has a moderate electrical longitudinal size (as is almost always the case in 
practice). Phrased more rigorously, a small number of longitudinal modes are necessary to 
accurately describe the longitudinal field variation in the SIW; the transverse field variation, 
given by Hankel functions of second kind, has exponential decay for imaginary transverse 
wavenumbers, which is the common case for higher-order modes. An empirical criterion 
presented in [45] gives the number of longitudinal modes sufficient for good accuracy as 

mN  number of propagating modes + 2, though in many cases only the lowest two modes 

are necessary; the first one accounting for the majority of interactions, long- and close-
range, the second one being a higher-order refinement accounting for the near-field 
interaction between closely-spaced scatterers. In fact, one can go a step further and adopt 
an adaptive longitudinal-mode number selection strategy [46]. Since a realistic PPW will be 
of small height, only the lowest-order mode will propagate, while the higher-order modes 
are suppressed. The geometrical spreading of the higher-order modes, which are assumed 

to have large imaginary wavenumbers (
mt mk j   ), is asymptotically 

    
   2 2

mR

n m

m

H j R e
R





   .              (2.252)

From this expression it is obvious the higher-order modes have a short range, and any 
interaction matrix of these modes will have a large number of entries of very small value. 
Instead of explicitly determining these, one can set them to zero according to some cut-off 

criterion. The simplest one is attained upon first defining the reciprocal distance 1/ m m   

where the exponential drops to 1/ e . This will serve as the “meter” for the area around the 
element where the mode m will be postulated to have a significant enough amplitude. 
Outside this area, its amplitude will be considered negligible (identically zero). For example, 

defining a “significance range” of 3 m  around an element stipulates that the mode can be 

considered to be zero in the region where its exponential part drops below 5 %. In our 

numerical tests, we have used the 4 m range, roughly corresponding to up to 1 % of the 

original amplitude. Now it becomes clear how to simplify our problem – for a given element, 
and for a given mode, find all the elements which are in the significance range around it, and 
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set up a boundary condition problem involving only those elements, while setting the modal 
scattering amplitudes of all the other elements to zero. This gives rise to much smaller and 
more stable linear systems for higher-order modes, reducing the computation time 
significantly and lifting the requirement of handling severely sparse matrices.  

 In a wide range of problems, the azimuthal variation can be efficiently described by 
a small number of azimuthal harmonics, due to the fact that a large number of SIW devices 
make use of posts of radii small compared to the wavelength. As such, the current induced 
on them will not vary significantly across their respective circumferences.  The empirical 
criterion for choosing the sufficient number of azimuthal harmonics to be used in the 
analysis was presented in subsection 2.2.1.8, but we repeat it here for convenience: 

    max min2 / 1.5 .N a        

A typical-sized post is on the order of approximately 0.3 , which leads to 3 azimuthal 
modes necessary for accurate field representation according to the above criterion. But, it 
should be noted that this criterion is global, i.e. applies to each and every post, regardless of 
its actual radius. An adaptive scheme can be easily applied where each post has its own 

necessary number of azimuthal harmonics, according to 
, min2 / 1.5post postN a      . 

This leads to an even lesser number of unknowns.  

 Now, in general one should rigorously consider the PPW-wave interaction between 
all posts and slots. But, consider a structure shown in the following figure. Such structures 
are commonplace since the most natural way of designing a corporate-fed SIW device is to 
feed several waveguides at once. The guides share common walls while the interaction 
between them can be tuned by changing the wall-post period p .  Usually, the period is less 

than a fifth of the guided wavelength, providing tight field confinement. It is then reasonable 
to expect that posts and slots belonging to different waveguides will in general interact 
negligibly, which results in small-value entries in admittance/post-interaction matrices. 
Again, setting these entries to zero spares us the effort of actually calculating them. But, a 
prudent criterion must be devised in order to take into account such interaction, while 
preserving the accuracy of the more rigorous solution obtained by consideration of all the 
interactions. 

Figure 2.17  Wave interaction in a multi-waveguide SIW device 

     

A conservative and a well-known one is to use the “nearest-neighbour approximation” – 
only the PPW-wave interactions between elements comprising or belonging to 

neighbouring guides are taken into account, while the rest are set to zero. If ,

PPW

l kY and 
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,

Posts

l kY represent vectors collecting all the direct-PPW and post-interaction amplitudes 

between guides l  and k , our criterion then demands that  

    , , 0 , 1PPW Posts

l k l k l k     Y Y  .               (2.253)

This constitutes an ad-hoc approach and therefore cannot be used in the analysis of general 
SIW devices. 

  An additional computational burden reduction can be obtained if there is a 
repeating pattern of slots, as e.g. in [107]. Then the slot-admittances calculated for the group 
of slots constituting the “unit cell” can be used to fill the admittance matrix entries of other 
groups having the same pattern. To illustrate the idea better, consider an array of N  
columns of M slots, each column having the same geometrical parameters. If one computes 

all the admittances blindly, there will be a total of     2 b bNMN NMN  integrals. The 

factor 2 comes from the fact that the total admittance of each slot pair is composed of either 

a sum of two PPW admittances, or one PPW and a half-space admittance. 
bN  refers to the 

number of basis functions used to model the current on each slot. Then, by calculating 
admittances between the slots of a single column, one automatically has the admittances 
pertaining to all the other columns. Therefore, the number of integrals to be computed is 
reduced by a factor of N , which can be significant in large arrays. It should be stressed that 
this procedure is possible if the PPW pertaining to the slots is translationally invariant.  

2.5 Conclusion and future development 

 A number of methods for the efficient analysis of planar SIW structures have been 
devised and applied over the years. In this thesis, a hybrid method merging the method of 
moments and mode-matching is presented, which builds upon the aforementioned 
methods, extending them to handle fairly general planar SIW problems. These include the 
presence of several stacked planar SIW waveguides connected via narrow coupling slots, 
guides loaded by media composed of an arbitrary number of planar dielectric layers, closed 
as well as radiating SIW devices.  

 In comparison to other similar methods, our carries the key advantage of 
scalarization – in order to find the pertinent dyadic Green’s function, the mentioned 
methods rely on what is known as the Ohm-Rayleigh procedure.  Essentially, one first finds 
complete sets of vector functions satisfying the Maxwell-Heaviside equations. These are 
obtained by differentiation from scalar functions (corresponding to characteristic modes of 
the boundary value problem in question). From there one proceeds to expanding the dyadic 
Green’s function in terms of the obtained vector “eigenfunctions”, leading to a spectral 
representation; an inverse Fourier transform is then effected, yielding the desired spatial 
representation. However, one should be extremely careful in performing the inverse 
transform since it will yield singularities which must be taken into account in a potential 
subsequent self-admittance (or self-impedance) evaluation. In addition, the procedure is 
quite tedious due to a series of function expansions and spectral integrations, in conjunction 
with abstruse regularization which must be applied to render the integrals convergent. 
Another, more conceptual than technical, difficulty is the relative lack of intuitiveness (i.e. it 
does not lend itself to simple physical interpretation) with respect to the method of 
Schwinger-Marcuvitz-Felsen we applied.  

On the other hand, we demonstrate how to construct the necessary dyadic Green’s function 
from scalar potentials, which we derive in what we believe to be an elegant manner – 
conceptually clear, physically interpretable and mathematically consistent. We show how 
the Green’s dyadic for PPWs loaded with piecewise-continuous dielectric media is 
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constructed and regularized, the regularization being of utmost importance in the 
subsequent application of the Petrov-Galerkin method.  

 A numerical method is ultimately judged by its efficiency – the ability to yield 
sufficiently accurate results within an acceptable time period. In our case, the key concept 
enabling the construction of an efficient method is the use of the radial transmission line 
field representation – the functions representing the field are expressed as products of 
Bessel or Hankel functions with azimuthal harmonics (complex exponentials periodic in the 
angular variable). Since most guided-wave devices of practical interest support the 
propagation of a single mode (usually the lowest-order one), higher-order modes will be in 
cutoff. Hence, the Hankel functions, used to encode the radial dependence of fields, will be 
exponentially dampened. From this it follows that only a small number of modes will be 
necessary to accurately represent the total field. Similar arguments apply to azimuthal 
modes describing the angular variation of currents and fields – if designed well, an SIW 
device will contain posts of circumference small compared to the dominant transverse 
wavenumber. Hence, a small number of azimuthal functions will be able to reconstruct the 
angular variation of pertinent fields and currents.  

In conclusion, using this field representation enables us to efficiently represent both the 
fields due to impressed sources, and the scattered field.  

This allows the construction of linear systems whose solution yields the amplitudes of fields 
scattered by posts; both dielectric and metal posts are considered.  

 Furthermore, we show how to numerically evaluate the fields in stacked devices 
consisting of a number of SIW guides connected by rectangular slots. This is done within the 
framework of the method of moments, which we formulate both for closed and open 
structures. We show how to construct linear method-of-moment systems using quantities 
already computed in the mode-matching analysis, thereby avoiding recomputation and, 
consequently, lowering the execution time. Various ad-hoc methods of lowering the number 
of unknowns and operations are presented, which result in significant time saving of the 
order of N, where N is the number of unit cells of a cascaded device (i.e., consisting of a 
number of identical guides, radiating or otherwise). Unfortunately, at present we do not 
have an automatized procedure which could be capable of autonomously recognizing the 
repetition patterns and symmetries of a general device. This might be an interesting 
direction to take in future research.  

 Although we present the results of the numerical experiments testing the efficiency 
of our code in the following chapter, we shall nevertheless spill a couple of spoilers here. 
From extensive experiments conducted against a commercial, well-known and well-tested 
EM solver, we demonstrate the significant advantage of our method over the commercial 
solver. The accuracy, which we define as the agreement between relevant quantities 
evaluated on a series of structures, using both the commercial solver and a MATLAB code 
based on our method, is excellent for all considered structures. Minor discrepancies exist, 
though they are the most pronounced in radiation patterns below the -20 dB mark, and can 
be considered less significant. As pertains the S-parameters, the agreement is excellent as 
well, even for multilayer-loaded SIW devices, as long as the ports used are not driven 
outside the single-mode regime. An extension of the method, covering the case of multiple-
mode driven ports has been recently devised by professors Casaletti and Valerio, and will 
be featured in an up-coming article. In terms of computation time, our method is 
significantly faster than the commercial solver, being from 4 to roughly 20 times faster 
(depending on the considered device). In addition, the memory usage of our code is severely 
lower due to a significantly smaller number of unknowns and applied speed-up methods. 
This is, in fact, what limits the applicability of the commercial solver to the analysis of large 
structures – at a certain point, the number of unknowns becomes so vast that even high-end 
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computers are not able to store all the necessary matrices. In such cases, our method can be 
reliably applied.  

 A summary of the most important results of the thesis is given below: 

I. The extension of the Schwinger-Marcuvitz-Felsen formalism to PPWs 
loaded with planar multilayer dielectric media.  

II. Consistent removal of spurious singularities of the Green’s dyadic.  
III. The application of the above formalism to planar SIW problems containing 

narrow rectangular slots.  
IV. Generalized expressions for slot admittance in planar multilayer-dielectric 

SIW devices. 
V. Significant reduction in computational time and memory usage with 

respect to standard EM solvers, with preserved accuracy.  

 Though the method presented in this thesis can be applied to a wide variety of SIW 
devices, it lacks several important features which would make it a complete analysis tool fit 
to handle practical scenarios. The first and foremost such feature is the handling of metal 
and dielectric losses. Though most devices are designed to minimize the said losses, and in 
some cases they might even be neglected, it is imperative to be able to predict them. This 
would require a different field representation, depending on the conductivity of metal 
boundaries. To be more specific, the presence of lossy metal surfaces, if their conductivity 
is high enough, could be taken into account by Leontovich boundary conditions [17], 
whereby they are represented by surface impedances. In general, this will lead to the 
description of the field by mutually non-orthogonal TM and TE sets, i.e. lossy surfaces cause 
mode-coupling. This approach in accounting for metal losses in SIW/SIW-like geometries 
has been applied in, e.g., [18], [19] and [20], to name a few, though no attempts to generalize 
to the case of a multilayer-dielectric-loaded PPW have been made. If, on the other hand, the 
considered conductivity is low, metal objects become penetrable and can be modelled, for 
example, as lossy dielectrics. This then leads to a more difficult problem, since the spectrum, 
in general, becomes continuous (although the discrete spectrum will most likely be present 
as well).  

 As described in section 2.2.1, the method assumes metal plates of infinite extent. In 
most practical cases, even for narrow slotted arrays, the truncation does not produce 
significant edge effects, i.e. spurious maxima in the radiation pattern due to edge diffraction. 
However, it might be beneficial to include corrections due to diffraction, for completeness’ 
sake, since it is not always prudent to neglect them. This can be done using an appropriate 
variant of the theory of diffraction (see e.g. [21] ).  
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3 RESULTS  

 

 Having presented the theoretical background of the hybrid method, along with 
numerical considerations involving the various truncation criteria, problem complexity, 
issues with numerical stability, and recommended techniques to handle specific parts of the 
analysis, we now arrive to the testing ground, where all the previously employed theorems, 
mathematical representations and rigour appear before the stern judgment of the 
experiment, and are sentenced according to the answer they provide to the most important 
question– do they work? This chapter answers that question systematically, starting from 
basic mode-matching problems involving no aperture radiation. There the post-scattering 
due to posts is put to the test, and the approximations and rule-of-thumb criteria for 
simplifying the analysis are justified. Both single- and multiple-layer dielectric media are 
considered, the limitations of the mathematical representations being established from 
considering extreme cases of thin dielectric layers. From there we proceed to radiation 
problems in the form of slot array analysis. Radiation patterns are compared to the ones 
obtained by the High Frequency Structural Simulator© [108], again both for single- and 
multiple-layer dielectric loaded antennas. In addition, runtime and CPU-load comparisons 
are put before the reader to demonstrate the relative reduction in both with respect to more 
general solvers.  

3.1 Post-scattering in closed SIW structures 

 Closed SIW structures comprise the majority of devices realized in SIW technology. 
By “closed” we refer to devices not intended for generation of radiation, be it by continuous 
leakage from the narrow wall, or aperture radiation from broad walls; put more simply, we 
refer to devices having negligible leakage losses of any form. We will compare both single-
layer dielectric structures and their multi-layered counterparts against the FEM-based 
commercial solver HFSS.   

 

3.1.1 Waveguide resonator 

 Figure 3.1 depicts an SIW waveguide resonator, consisting of a rectangular 
arrangement of metal posts, embedded in a dielectric substrate of relative permittivity

2.2r  . At each end of the resonator, approximately at 0.25 g  away from the back wall, a 

coaxial transition is placed, launching a TEM mode. The geometrical parameters are shown 
in Table 3.1  The scattering parameters were then calculated over a wide frequency range, 
both with our homebrewn MATLAB code and HFSS. This particular structure was chosen as 
a benchmark since a) it represents a commonly used geometry, b) contains a common 
excitation, and c) it serves as the milestone towards more complicated structures since it 
establishes the validity of mode-matching in a simple scenario. As pertains the analysis, the 
following table summarizes both the number of basis functions and the mesh used, in the 
code and HFSS, respectively. In addition, computational times are listed as well to show the 
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relative merit of using one method over the other. This will be the template for all the other 
results that follow.  

Figure 3.1 Closed resonator SIW structure fed by coaxial ports  

  

Table 3.1 Geometrical parameters of the closed resonator SIW structure 

 Cylinders N=114; a=0.2 mm ; px= py=4.6 mm  

Frequency range [8, 14] GHz 

Dimensions  119.6 mm 23mm 3.2 mm L W h          

rε   2.2 

Feeds  2 coaxial ports - 
2 14 0.8 mmd d a     

 

It is to be noted the code and HFSS agree very well on S-parameters, particularly on the 
11S

, less so on 
21S . As the frequency increases, the results diverge, which is due to the precision 

of HFSS results, limited by the mesh coarseness. In this example, we did not wish to 
exaggerate on the mesh cell size in HFSS, but keep it at a level which provides sufficiently 
accurate results at a reasonable computational time. The example which follows will amend 
for this “lack” in precision. 

Figure 3.2 S-parameters of the closed SIW resonator;  a) S11, b) S21 

a) 
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b) 

   

Table 3.2 Mesh properties and runtimes for the SIW closed resonator 

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns      5 7 114 3990z postsN N N    56 149 

Runtime 2.45 min 31.45 min 

RAM (max) 46 MB 849 MB 

 

It should be emphasized here that we compare the performance of the methods in terms of 
the number of unknowns as well. Although the penultimate measure of performance is the 
total runtime and memory consumption, the number of unknowns crudely informs one of 
the complexity, and its trend of growth with the electrical size of the problem. Hence, it 
should not be considered a definite measure, but as more of an informative one describing 
the discretization nature of the respective method. On inspection of the respective runtimes, 
it is obvious that the hybrid method executes in considerably lesser time; a speed-up factor 
of approximately 13 is gained. Moreover, reducing the number of longitudinal harmonics 
used to mere two and azimuthal harmonics to five hardly decreases the accuracy while 
reducing the time by a further factor of roughly 3.  

To verify the multilayered formalism, as it applies to closed structures, we simulated the 
very same closed resonator, but with a two-layer dielectric instead of a single-layer one. The 

bottom layer is 1.6 mm thick and has permittivity 
1 2.2r  , while the top one has 

1 6.6r 

and is 1.6 mm thick as well. These values were chosen randomly, referring to no realistic 
structure, but in such a way to put the formalism to test properly – the layer thicknesses are 
comparable while the permittivity contrast is large, presenting a truly multi-layered 
scenario. Again, using both methods we computed the S parameters, the results obtained 
shown in the next figure. HFSS meshed the structure in a total of 42 546 tetrahedra and 
triangles, taking roughly 9 times the time the hybrid code took to perform the full sweep. 
On the other hand, the hybrid code was ran with only two longitudinal harmonics and 5 
azimuthal harmonics considered, yielding truly excellent accuracy, save for the phase of the 
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S-parameters, for which the agreement is modest. The runtimes, shown in the following 
table, serve to emphasize the considerable advantage of using the hybrid code.    

Figure 3.3 S-parameters of the two-layer dielectric loaded slot array: a) magnitude, 
b) S11, c) S21 phase 

a) 

   

b)      c) 

 

 

Table 3.3 Mesh properties and runtimes for the SIW closed resonator loaded with a 
layered dielectric 

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns      2 5 114 1140z postsN N N    42 546 

Runtime 1.62 min 10.26 min 

RAM (max) 79 MB 380 MB 

 



Modélisation électromagnétique rapide de structures SIW par équations intégrales 

Josip Seljan - July 2016 

 

102 Results 

An additional test of the multilayered formalism was performed, where the permittivities 
of a two-layer loaded closed resonator were chosen very close to each other, i.e. 

1 22.2, 2.21r r   , and the S-parameters computed. These were then compared to the S-

parameters of the single-layer resonator, revealing a better-than 1 % agreement (on 
average over the whole testing frequency band); these are shown in the following figures. 

Figure 3.4 S-parameters of the single-layer dielectric loaded resonator versus the 
“almost” single-layer resonator: a) magnitude; b) phase 

a) 

 

b) 

     

It can be seen that noticeable discrepancies in S-parameters are the ones between S21 of the 
respective devices, being present at peaks of the respective curves, i.e. resonances; this 
particular behaviour can be attributed to the small frequency shift induced by the dielectric 
contrast, and the coarseness of the frequency mesh used in the simulation. However, the 
overall agreement is truly excellent.  

Thus, it was shown the multilayer formalism numerically reduces to the single-layer 

formalism when the dielectric contrast is sufficiently small, i.e. 1 2 1/ 1%r r r        .  

This fact serves to reinforce the validity of both the single and multilayer formalism. 

Based on the results so far, our method, as it appears at this moment, may be safely applied 
to the design of dielectric-loaded closed structures, provided the excitation port is not 
driven outside its operating band (where its model is valid). Further examples, as will be 
shown, serve to support this claim. 
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3.1.2 SIW waveguide filter 

The previous two examples served as demonstrations of the hybrid method’s basic 
capabilities concerning simple, straightforward waveguide devices. As was shown, the 
method holds quite well against the industry standard solver and, presumably, against a 
plethora of alternative methods for solving SIW waveguide problems, described in section 
1.3. However, the examples to follow pertain to more complex and, consequently, more  
interesting scenarios; the first one being a multilayered modification of a waveguide filter, 
originally presented in [109]. Its layout is depicted in the following figure. 

Figure 3.5 Layout of the SIW multilayered, three-pole Chebyshev filter  

 

The filter itself consists of a short SIW waveguide section with a pair of identical coaxial 

ports, located at approximately / 4x away from respective end-walls (
x  at the central 

frequency 27 GHzf   in our case, 28GHzf   in the original case), The ports launch 

exciting fields onto an array of inductive posts, whose radii and offsets in the transverse 
direction (y-direction) have been orginally tuned to realize a three-pole Chebyshev filter 
with the central frequency at 26.5 GHz. Our modification consists solely of replacing the 
single-layered dielectric slab in the original device with a multilayered one, in order to 
investigate the effects of its presence on the bandwidth of the filter. The exact geometrical 
parameters of the filter are summarized in the table below. 

Table 3.4 Geometrical parameters of the multilayered SIW filter 

Parameter Value 

W 5.565 mm 

L 3.5 cm 

h 0.787 mm 

d 0.3875 mm 

px 1.525 mm 

py 1.4 mm 

d1 0.3875 mm 

d2 1.55 mm 

 

We performed a set of simulations against HFSS, for a series of different dielectric profiles, 
from which S-parameters were extracted. The dielectric profiles were chosen in such a way 
to test both the accuracy of the hybrid method, and to investigate the consequences of wave 
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propagation through a multilayered slab. The results of the investigation are shown in the 
following set of figures. 

Figure3.6 S-parameters of the multilayered SIW filter with  2.2, 3.3r   ,

 0.5, 0.5t h     

 

 

Figure 3.7 S-parameters of the multilayered SIW filter with  2.2, 3.3r   , 

 0.9, 0.1t h    
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Figure 3.8 S-parameters of the multilayered SIW filter with  2.2, 6.15r   , 

 0.5, 0.5t h    
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Figure 3.9 S-parameters of the multilayered SIW filter with  2.2, 6.15r   , 

 0.8, 0.2t h    

 

 

As can be seen in the figures above, the agreement is excellent throughout the whole 

considered band (  23, 28 GHzf    ), save for a frequency shift of roughly 50 MHz; such a 

shift is commonplace in comparisons of results obtained with electromagnetic solvers 
employing disparate solution methods. As for results themselves, they clearly demonstrate 
an unsurprising effect – the passbands of the respective variants are shifted toward higher 
frequencies with respect to the original structure whose S–parameters are shown in the 
figure below (Figure 3.10). The original one contains a dielectric slab of permittivity 

2.2r  , whereas all the simulated ones contain two-layer slabs with one of the layers 

having permittivity larger than 2.2. Hence, the added dielectric volume of higher 
permittivity shifts the modal propagation constants higher up. In addition, it decreases and 
distorts the magnitude of S11 throughout the entire passband, since the presence of an 
additional layer makes the impulse response of the filter less stationary within the 
passband, leading to reduced forward scattering and ripples in the magnitude. 
Unfortunately, this precludes the use of layered dielectrics as means to bandwidth 
enlargement, as originally envisioned. However, the addition of thin layers on the top and 
bottom of a central dielectric layer (i.e. sandwiching) still might lead to decreased losses, 
although the exact effect of this modification on the dispersion is yet to be investigated. 
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Figure 3.10 S-parameters of the original SIW three-pole Chebyshev filter [109] 

 

 

3.2 Radiating structures 

 

Having demonstrated the accuracy of our method by numerical experiments 
involving closed structures, we move onto the more demanding class – radiating SIW 
structures. These are typically realized by etching narrow slots on the broad wall of a SIW 
waveguide. Here we present the results of analysis performed on a series of radiating SIW 
devices of increasing complexity.  

To facilitate navigation through the rest of this subsection, we define here the notation 
pertaining to radiating devices, as follows: 

 h is the waveguide height, expressed in millimeters (as are all the other dimensions). 
 t denotes the dielectric slab thickness; in case of multi-layered devices, this is a 

vector containing all the slab thicknesses, ordered in such a way that the thickness 
of the lowermost  layer  (i.e. having the lowest z-coordinate) is its first entry, all the 
subsequent ones placed after in the order of increasing z-coordinate.  

 
r  denotes the relative permittivity of the dielectric slabs present in the device; as 

t, it is a vector and ordered in the exact same way. 

 
xp and yp  denote the period between posts in the x-direction (which we take to be 

the direction parallel to the device’s largest chord) and y-direction, respectively. 
 L denotes the length (span in x), while W denotes the width (span in y) of the 

waveguide/device. 

In addition, since the devices analysed in the following subsections have similar geometries, 
it seems appropriate here to illustrate the waveguide layout of a generic radiating device, 
shown in the following figure.  
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Figure 3.11 Layered-dielectric loaded waveguide cross-section (no posts shown for 
clarity) 

 

    

3.2.1 Waveguide slot array 

 The next structure we simulate is shown in the following figure. It is a standard 
rectangular-guide slot array implemented in SIW technology, consisting of a vertical post 

fence embedded in a substrate of permittivity
r , mimicking a rectangular guide. A coaxial 

transition, protruding through the bottom metal plane, located at approximately 0.25 g  

away from the backing wall, launches a TM-only field towards the slots etched in the upper 
metal plane. These are optimized for broadside radiation, the central frequency being 24.15 
GHz. 

Figure 3.12 SIW  8-slot array; a coaxial port feed is used 

 

First, we simulate an array loaded with a single-layer dielectric. The device parameters are 
summarized in the following table (Table 3.5). The radiation pattern was computed at 
several frequencies within the 23.15 to 25.15 GHz band, both using the MoM code and HFSS, 
in order to test the accuracy of the MoM formulation. In this specific case, the waveguide-
to-free-space coupling was tested before proceeding to the more general and complex case 
of waveguide-to-waveguide-to-free-space coupling. The results are shown in the following 
figures (Figure 3.13, Figure 3.14) 

Table 3.5 Geometrical parameters of the SIW 8-slot array 

 Cylinders N=183; a=0.2 mm ; px=0.8 mm; py=0.7 mm  

Frequency range [23.15, 25.15] GHz 

Dimensions  66.4 mm 5.6 mm 0.508 mm L W h          

Slot dimensions 

 5.151, 5.163, 5.224, 5.25, 5.25, 5.224, 5.163, 5.151 mm,

mm

slot

slot

L

W

  

 

 

rε   2.2 

Feed  Coaxial port - 
2 14 0.8 mmd d a     

1t

2t

h
1r

2r

2d
1d

L

W
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As can be seen, the agreement is excellent for 0  , being near-perfect within the main-

lobe angular range, and deteriorating slightly towards θ = 90  , but with side-lobe number 

and their respective maxima predicted accurately. The 0 radiation patterns, on the 

other hand, tend to agree less favorably, although the predicted field amplitudes differ less 
than 0.75 dB at worst .  

Though the patterns shown here were computed at only two frequencies, good agreement 
between the methods holds throughout the whole tested frequency range. In addition, the 
computational performance of the MoM code is by far superior to that of HFSS, as can be 
seen from the following table (Table 3.6). 

Figure 3.13 SIW 8-slot array radiation pattern at 23.15 GHz; a) 0   plane, b) 

90   plane 

a)      b) 

 

Figure 3.14 SIW 8-slot array radiation pattern at 25.15 GHz; a) 0   plane, a) 90   

plane 

a)      b) 
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Table 3.6 Mesh properties and runtimes for the SIW 8-slot array 

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns        2 5 183 24 1854z posts basis functionsN N N N      81 718 

Runtime 1.32 min 8.78 min 

RAM (max) 79 MB 2.63 GB 

 

To ascertain the accuracy of port parameters calculation, S11 was computed and compared, 
the results shown in the following figure (Figure 3.15). The agreement is satisfactory, the 
greatest discord being roughly 1 dB at the first resonance in the considered frequency range, 
with the overall agreement tending to improve with frequency. Hence, we argue that, 
judging by the code performance so far, one can use the formulation with confidence for 
radiating planar-SIW problems involving slots; that is, for guides loaded with single-layer 
dielectrics. Whether it can be used when multi-layered dielectrics are present is tested in 
the following numerical experiment. 

 

Figure 3.15   S11  magnitude and phase of the single-layer dielectric-loaded slot array 

 

3.2.2 Two-layer dielectric loaded slot array 

 This particular device is analogous to the previously shown single-layer loaded slot 
array. The “only” difference is that this one is loaded with a two-layer dielectric structure. 
The dispersion in such a case is dramatically different than in a single-layer PPW type case, 
since no TEM modes exists, even when the difference in relative permittivity or the 
thickness of a given layer is small. It is for this reason the present example was chosen to 
test both the validity and limitations of the multilayer formalism presented earlier in the 
thesis. All the parameters are exactly the same as for the single-layer slot array, save for the 
permittivity profile, which in this case is as follows – the bottom layer is 0.25 mm thick (half 

the total height) with 
1 2.2r  , while the top layer is 0.25 mm thick as well,  with 

2 4.3r 
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. The normalized directivity thusly obtained are shown below (Figure 3.16). It can be seen 
that the agreement is excellent, especially in the main-lobe angular range. The sidelobes 
diverge, especially for wide observation angles near / 2   . However, the agreement 
is very good all the way down to roughly -35 dB, and the number of lobes is predicted to be 
the same by both methods, leading one to conclude that the multilayer formalism may be 
safely used to compute radiation patterns of arrays loaded with multilayer dielectrics. 
Though one should be inclined to compare two similar methods (in our case, a hybrid MoM 
with a reliable, well-tested MoM, e.g. FEKO) in terms of performance, it is remarkable that 
our hybrid MoM agrees quite well with the FEM of HFSS. However, we reiterate here that 
caution must be exercised when setting up the simulation in HFSS in order to ensure proper 
convergence. As a general rule of thumb, one should compare relatively well-matched 
radiating structures (though it is not imperative), and the airbox used to define where the 

equivalent currents are computed should be well-meshed (below 0.1 fs  , where fs  is the 

free-space wavelength). The solution data, containing the number of unknowns, runtimes 
and RAM usage is shown in the following table (Table 3.7). 

Figure 3.16 Two-layer slot array normalized directivity at: a)  0, 90   planes, 21.6 

GHz; b)  0, 90   planes, 22.6 GHz 

a) 

 

b) 

  

As can be noted, the increase in computation time and memory usage is almost negligible 
with respect to the single-layer case, both the one of our method and the one of HFSS. 
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Essentially, the multi-layered scenario does not demand significantly higher computational 
resources than the single-layer case.  

However, as the permittivities increase, HFSS increases the mesh drastically, whereas the 
increase in the number of unknowns in our method is significantly lower; for most scenarios 
encountered in practice, it is sufficient to condsider no more than two lowest-order 
longitudinal modes, three to five azimuthal modes on each post, and five to seven slot basis 
functions. 

Table 3.7 Mesh properties and runtimes for the SIW two-layer slot array 

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns        2 5 183 24 1854z posts basis functionsN N N N      221 258 

Runtime 1.57 min 9.3 min 

RAM (max) 89 MB 2.93 GB 

It is then expected that, for cases when higher-permittivity dielectrics are used (e.g.  10r   

), our method shines through. At this point it is expedient to consider a number of different 
dielectric profiles if one is to attest the generality and accuracy of the proposed analysis 
approach. Namely, we wish to inspect whether the approach provides stable and accurate 
results over a relatively wide frequency range when different scenarios are considered. For 
this purpose, as before, we performed a set of simulations of the two-layer loaded slot array 

over the frequency region  25, 27f   GHz, the thicknesses of layers having been set equal, 

but the relative permittivities of respective layers were varied.  Both the S11 parameter and 
far fields in two orthogonal planes were computed, and are shown in the following set of 
figures; in order to avoid clutter, we show the computed far fields at three distinct frequency 
points on a single figure – the endpoints and the midpoint of the chosen range. The 
permittivities were chosen in such a way that they take values close to commonly used 

dielectric materials; the permittivity of the bottom layer is kept fixed at 2.2r  , whereas 

the ones of the top layer were  1.1, 5.5,8.8r    , in the order of the following presentation. 

The far fields obtained with the MATLAB code and HFSS, corresponding to the same 
frequency are marked by the same colour. 

The first simulated case, shown in Figure 3.17, demonstrates the effect of the presence of 
two dielectric media of relatively small dielectric contrast, the bottom layer being of larger 

permittivity than the top one (  2.2,1.1r   , to be precise). With respect to the single-layer 

dielectric loaded slot array, containing a slab of permittivity 2.2r  , one expects a 

decrease of the modal cut-off frequencies; indeed, this is evidenced on comparison of the 
frequency dependence of modal wavenumbers of the respective slot arrays. In addition, 
numerical tests confirm that the longitudinal profile of propagating modes, supported by 
the structure, is such that there exists a standing wave in the slab of higher permittivity, 
whereas an evanescent wave, decaying in the positive longitudinal direction (i.e. in the +z 
direction), exists in the slab of lower permittivity. This should be taken into account when 
designing radiating devices, since the field of lower-order modes will tend to be confined 
more strongly in the slab of higher permittivity [110, p. 15]. Of course, this caveat is to be 
taken as a heuristic, since the radiating elements themselves will significantly affect the total 
field distribution.  
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Figure 3.17 Two-layer slot array with  2.2,1.1r   :  a) normalized directivity in the 

0   plane, b) normalized directivity in the 90   plane, c) S11 

a) 

  

b) 
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c) 

 

The S11 parameters, obtained by both the code and HFSS, shown in Figure 3.17 c), agree well, 
with a slight frequency shift present, as seen in the analysis of closed structures; this is a 
common phenomenon present when two differing methods of analysis are used (see e.g. 
[111, Ch. 21]). Naturally, the agreement depends on the degree of equivalence of respective 
port models, convergence and accuracy of methods applied, amongst others. 

 As for the radiation patterns, the agreement is excellent over the whole angular range in 

the 0   plane (i.e. H-plane), throughout the entire considered frequency range. On the 

other hand, the 90  (E-plane) radiation patterns do not agree well in general, which can 

be attributed to the limited size of the radiation surface used in HFSS; the computational 
limitation imposed by the RAM available on the test configuration (8 GB RAM) dictated a 
radiation surface of modest size (a rectangular box enclosing the array of height 0.5 ), and 
the pertinent mesh had been chosen fine enough to give accurate results in the H-plane (the 
maximum cell size was set to 0.05 ). On the other hand, MATLAB simulations were 

performed using    MoMN , N , N 3, 5, 7z       modes/basis functions.  

Concerning the remaining two cases, the far fields agree very well for the  2.2, 5.5r    

case (Figure 3.18), and the S11 agree relatively well, if one takes into account that the 
structure is very poorly matched over the whole frequency range (the minimum occurring 
at roughly -0.21 dB, for both the MATLAB code and HFSS). Unfortunately, the agreement 

deteriorates slightly for the  2.2,8.8r   case (Figure 3.19); the discrepancy is most 

noticeable between the sidelobes, up to 3 dB. The S11 curves differ significantly in the 

 26, 27 GHzf     range, with a prominent frequency shift of roughly 0.1 GHz, and a large 

maximum discrepancy of 5 dB. Although we have not been able to identify decisively the 
source of disagreement, we partially traced this problem to the convergence of the HFSS 
model. Namely, varying the mesh cell size of both the feeding coaxial port and the radiation 
boundary, we noticed a lack of definite convergence, most prominently in the radiation 
patterns. On the other hand, the said figures of merit remain stable with increasing order of 
basis functions used in the MoM/mode-matching code. That this is so should not be 
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surprising – since HFSS’ convergence is directly tied to the convergence of S-parameters, it 
is possible, and often the case, that the computed radiated fields and quantitites derived 
therefrom may be inaccurate. The accuracy of the fields computed in mesh cells on and close 
to the ports will affect overall accuracy most significantly, with the implication that the 
accuracy with which the fields are computed on mesh cells on the radiating 
elements/radiation boundaries may be reduced.  

Figure 3.18 Two-layer slot array with  2.2, 5.5r   :  a) normalized directivity in the 

0   plane, b) normalized directivity in the 90   plane, c) S11 

a)                 

 

b) 
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c) 

 

Figure 3.19 Two-layer slot array with  2.2,8.8r   :  a) normalized radiation pattern 

in the 0   plane, b) normalized radiation pattern in the 90   plane, c) S11 
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b) 

 

c) 
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3.2.3 Five-waveguide slot array 

 Though the previous examples served well to emphasize the relative merits of our 
hybrid formulation with respect to commonplace commercial EM solvers, they were 
concerned with relatively simple devices containing a modest number of elements – around 
a hundred metal posts, maybe few or no slots and coaxial ports. If the true power of this 
approach is to be demonstrated, a demanding structure should be chosen as the benchmark. 
The first in a series of such devices is the five-waveguide slot array shown in the following 
figure.   

It is nothing more than a cascade of five slotted waveguides from the previous two tests, set 
side-by-side, with all ports fired simultaneously. However, the qualifier “nothing more” 
might be misleading, since this structure contains roughly three times the number of pins 
of a single-waveguide array, and five times more slots. It should be clear that the number of 
interactions which must be taken into account is roughly ten times larger than in the single-
waveguide case. 

Figure 3.20 Five-waveguide SIW  slot array 

          

Hence, it represents a significantly more demanding test case than the previous ones. The 
geometrical and simulation parameters are summarized in the following table. 

Table 3.8 Geometrical parameters of the five-waveguide SIW slot array 

Cylinders N=579; a=0.2mm ; px=0.8mm; py=0.7mm 

Frequency range [24.1, 26.1] GHz 

Unit Cell 
Dimensions 

 66.4 mm 5.6 mm 0.508 mm L W h         

Slot Dimensions 

 5.151, 5.163, 5.224, 5.25, 5.25, 5.224, 5.163, 5.151 mm,

mm

slot

slot

L

W

  

 

 

Layer thicknesses (0.9, 0.1)h 

rε  (2.2, 1) 

Feed Coaxial port - 
2 14 0.8 mmd d a      

2d
1d

L

W

xp

x

y

z

yp
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As before, we calculated the H-plane radiation pattern of the device over several 
frequencies; the results are shown in the following figures.  

Figure 3.21 Two-layer dielectric, five waveguide slot array radiation pattern at - a) 

24.1 GHz, 0  plane,  b) 24.1 GHz, 90  plane, c) 25.1 GHz, 0  plane, d) 25.1 

GHz, 90  plane, e) 26.1 GHz, 0  plane, f) 26.1 GHz, 90  plane 

a)                  b) 

  

c)                  d) 

      

e)                  f) 
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The agreement between the methods is, as up until now, excellent for fields in the 0 

plane despite the markedly higher complexity of this structure compared to the previous 
ones. Minor discrepancies exist outside the main lobe angular range, though below the -18 

dB mark. Unfortunately, the 0  plane fields agree well only within the main lobe angular 

range. In terms of the computation time, this example demonstrates the relative merit of 
using our method – as the electrical size and complexity increase, the commercial solver 
becomes increasingly greedy, requiring excessive amounts of time not only to properly 
mesh the structure in question, but to adaptively compute the field, where the mesh is 
refined between iterations. 

The solution data, shown in Table 3.9, clearly shows that the increase in the computation 
time in going from the single-waveguide to five-waveguide case is by a factor of roughly 27 
for HFSS.  On the other hand, our method required roughly ten times the time it took for the 
single-waveguide case. Thus, one can safely state that our method is immensely 
advantageous in comparison to the commercial solver, inasmuch that even a simulation as 
demanding as this one can be run on a medium-range laptop. 

 

Table 3.9  Solution data for the five-waveguide, two-layer slot array with 

   0.9, 0.1 , 2.2,1rt h       

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns 
       2 2 579 200 2516z posts basis functionsN N N N    

 
703 431 

Runtime 11.6 min 278.7 min 

RAM (max) 2.6 GB 7.31 GB 

 

Again, we performed a series of simulations using different dielectric profiles. For the sake 
of brevity, we show here the case when a dielectric comprising two layers of equal thickness 

and permittivities  2.2, 5.5r   . The simulation setup here, however, differs from the 

single-waveguide test case due to limitations in available dynamic memory – we used 

   MoMN , N , N 2, 5, 5z       in the hybrid code (compared to    MoMN , N , N 3, 5, 7z      in 

the former test scenario), while the solution frequency of HFSS was set to 30 GHz, with the 

radiation surface meshed using elements of maximum size 
max mesh0.1l  , where 

mesh  is 

the free-space wavelength at 32 GHz (chosen so as to ensure relatively accurate radiation 
patterns). Moreover, the order of basis functions used by HFSS’ FEM solver was demoted 
from mixed-order to first order. The following results summarize the behaviour of 
respective methods in this more “stressful” scenario. 
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Figure 3.22 Radiation patterns of the five-waveguide slot array with 

   0.5, 0.5 , 2.2, 5.5rt h       : a) 25 GHz, b) 26 GHz, c) 27 GHz  

a) 

 

b) 

 

c) 

 

Evidently, the hybrid code produces results close to the one of HFSS, even with reduced 
precision (dictated by the number of basis functions used). Although the agreement is good 

in the 0   plane, what is especially interesting that the agreement is significantly better 
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in the 90  plane compared to the previous test cases. Extensive testing of both the 

single-layer and multilayer hybrid code versions indicates that the agreement in the 

90  plane will generally be good provided the pattern is narrow, i.e. there exists a 

pronounced single main lobe, although we have not determined the bounds on the angular 
extent thereof. Unfortunately, as stated already, we were not able to conclusively trace this 
phenomenon back to a specific characteristic of either of the methods used; it still remains 
to determine the source of discrepancy.   

Regarding the computational resources used, the following table summarizes the demands 
and gains in the given scenario.  

Table 3.10 Solution data for the five-waveguide, two-layer slot array with 

   0.5, 0.5 , 2.2, 5.5rt h       

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns        2 5 579 200 5990z posts basis functionsN N N N      606 043 

Runtime 68.52 min 218 min 

RAM (max) 3.7 GB 7.39 GB 

 

Even though the memory demands on HFSS have remained almost the same as in the 
previous case (albeit a coarser mesh was used in this one), while the computational time 
has reduced, the in-house MATLAB code still compares favourably with a computational 
time smaller by a factor of roughly 3, and the RAM consumption half the one of HFSS.  In 
light of solid agreement between the respective results, one has here yet another 
confirmation of the accuracy and efficiency of our hybrid method.  

 Though the former test cases make a solid argument for the reliability of our home-
brewn MoM/mode-matching code, due to its accuracy in scenarios with largely differing 
permittivity profiles, one could raise a reasonable concern whether it holds over a wide 
range of thickness profiles as well. In fact, it being based on a semi-analytical scheme, rooted 
in the use of closed-form, exact Green’s functions for multi-layered media, should make it 
valid for arbitrary thickness/dielectric profiles. Moreover, a similar approach  [87] (and one 
of the more successful ones) dealt with two dielectric layers of comparable thickness (equal, 

to be more exact) and of small permittivity contrast (  3.2, 4.3r   ), representing an 

“almost” single-layer scenario. Hence, it would be both interesting and necessary to inspect 
the behaviour of truly multi-layered devices, i.e. ones with both a larger dielectric contrast 
and thickness difference between the layers.  

For this purpose, we simulated the behaviour of the five-waveguide, multi-layer dielectric 
loaded array with a fixed dielectric profile and varying thickness. In more detail, the 

permittivities were chosen to be  2.2, 6.15r    (the latter corresponding to the one of 

Rogers Duroid 6006 laminate), and a parametric study was performed by varying the 

thicknesses from  0.1, 0.9t   to  0.9, 0.1t   and computing the radiation patterns and 

S-parameters over the  26, 27 GHz  range. For the sake of brevity, only the said extreme 

cases are shown below.  
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The first scenario, involving a bottom layer of thickness 0.1h  and permittivity 2.2, and the 

upper layer of thickness 0.9 h and permittivity 6.15, is a more challenging one, since the 
presence of a thick layer having relatively higher permittivity will contribute to a larger 
dispersion throughout the considered frequency range. To be more precise, the propagation 
constant of the dominant mode will increase more rapidly with frequency, compared to the 

second scenario (    0.9, 0.1 , 2.2, 6.15rt h      ).  This will, in turn, lead to less 

predictable behaviour of the radiation pattern. Moreover, such a scenario will be more 
demanding to simulate using HFSS’ FEM, due to a larger number of mesh cells required to 
accurately handle the thick slab of higher permittivity.  

Figure 3.23 0   plane radiation patterns of the five-waveguide slot array in the 

with    0.1, 0.9 , 2.2, 6.15rt h      at (26, 27) GHz 

  

Figure 3.24  0   plane radiation patterns of the five-waveguide slot array in the 

with    0.9, 0.1 , 2.2, 6.15rt h      at (26, 27) GHz 
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At 26 GHz, the agreement is very good, even in the grazing angle range (Figure 3.23). 
However, already at 27 GHz the agreement deteriorates – not only do the respective 
methods deviate significantly in the predicted field levels, but in the predicted number of 
lobes as well! This behaviour is indicative of a problem with the model – the HFSS simulation 
took a considerable amount of time to converge to a solution with the maximum change in 
the S-parameters between iterations taken to be 2 %. The radiation pattern convergence 

with respect to the height of the radiation box (chosen to be multiples of 
0 / 2 ; 

0   being 

the free-space wavenlength at 24 GHz), shown in the following pair of figures (Figure 3.25), 
in conjuction with the poor matching of the antenna, leads one to conclude that industry 
solvers should be used with precaution; since one is never fully in control of the method 
used, nor is its implementation transparent, there is no guarantee that it will provide 
accurate estimates of relevant quantities for all considered devices. 

Figure 3.25 Realized gain convergence with respect to the radiation box height (for 

the two-layer, five waveguide slot array);  a) 0   plane, b) 90   plane  

a) 

   

b)   
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Opposed to the first one, the second scenario (    0.9, 0.1 , 2.2, 6.15rt h      ) 

does not suffer from the aforementioned problems. As can be noted in Figure 3.24, the 
agreement is excellent at both frequencies (in fact, in the whole range), which can be 
attributed to it being a better-matched structure, and the radiation pattern is more focused 
towards broadside, compared to the previous case. 

Hence, it is implied that care must be exercised when considering “pathological” cases since 
they require a more meticulous simulation setup. 

3.2.4 Corporate-fed stacked waveguide slot array 

 At this point, the validity and accuracy of the formulation proposed in the thesis, 
especially the part pertaining to multi-layered scenarios, has been demonstrated over 
several typical cases – closed and radiating problems, single-dielectric and multi-layered 
problems, in varying degrees of complexity. However, it still remains to be seen whether the 
method retains its advantages in extreme cases – applied to devices of great complexity and 
electrical size. An adequate benchmark is then necessary, which embodies all, or at least 
most of the characteristics of actual SIW devices. For this purpose, a corporate-fed, stacked-
waveguide slot array, devised by Tekkouk et al. [34], and shown in the following figure, was 
chosen and modified since it: 

A. consists of a large number of elements, 
B. is electrically large, 
C. is composed of several stacked waveguides, and 
D. is an example of a complex radiating device (slots being the radiating elements). 

The original array, as described by Tekkouk et al., comprises three main planar waveguides, 
stacked on top of each other. The intermediate waveguide is partitioned into 16 distinct 
smaller ones by metal post fences running along the length of the structure, while the 
topmost guide is partitioned into 32 smaller guides by additional transverse fences. The 
bottom waveguide provides exciting fields by way of a 1:16 microstrip-type power divider, 
each of its branches running all the way to a respective coupling slot which is located on the 
metal plane common to the bottom and intermediate guide. The field coupled to the 
intermediate guide is then passed down to slots equally removed from the bottom coupling 
slot, which serve to relay the energy to the topmost guide, comprised of 32 identical slot 
arrays. These slots are located in the middle of each subguide/slot array, feeding them in 
phase, and thusly increasing the bandwidth of the total array. 

In the following simulations we have replaced the microstrip power divider with feeding 
waveguides, since the hybrid code cannot yet analyse hybrid microstrip/SIW structures. 
However, this does not impact the operation of the array significantly with respect to the 
original layout – the matching bandwidth of the feed is predominantly dictated by the 
coupling slot resonance, whereas the feeding waveguide and the microstrip line have a 
wider, less sensitive matching frequency dependence in the considered band. Hence, no 
significant loss of fidelity is encountered in passing from the original to the tweaked 
structure. The exact number of elements and array dimensions are summarized in the 
following table. 

As in previous examples showcasing radiating SIW devices, we calculated the radiation 
patterns at several frequencies using HFSS and the in-house hybrid code; the results are 
shown below. Figure 3.27 shows the radiation patterns of a single unit cell of the corporate-
fed slot array at two distinct frequencies. At 14.1 GHz, the global maxima are located at 

roughly 45 , with a number of smaller maxima in between (the next-to-largest one being 
approximately 14 dB below the global one).  
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Figure 3.26 Corporate-fed slot array layout: a) exploded view, b) sideview schematic 
(taken from Tekkouk et al. [34]) 

a)            

   

b) 

   

Table 3.11  Unit-cell geometrical parameters of the corporate-fed, stacked waveguide 
array 

Cylinders N=715; a=0.3 mm; px=1.2 mm; py=0.94mm 

Frequency range [14.1, 15.1] GHz (
0 14.25GHzf   ) 

Unit Cell 
Dimensions  

1 2 3

o o 0

b 0.305 mm , b b 1.524 mm ;

L W = 26 cm 19 cm 12.35 λ 9.03 λ @ f

        

           
 

Layer 
thicknesses 

(0.7, 0.3)h 

rε  [3.55, 2.2/1] 

Slot dimensions 

Coupling slot - 7.1mm, mm;slot slotl w    

Radiating slots - 7.195 mm,slotl     

                                mm;slotw    

Feed Waveguide port 
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The agreement between the in-house code and HFSS is excellent all the way from the zeros 

preceding the main lobes up to 90 , whereas it is less than stellar between the 
aforementioned zeros, though the positions of maxima and zeros agree quite well; the 
average difference in the normalized amplitudes is more than 3 dB. 

Although the secondary maxima are of amplitude below -14 dB, this reveals a significant 
discord between the methods, which is only further pronounced at 15.1 GHz (Figure 3.27 
b)). At this frequency, the radiation is manifestly broadside, and the main lobes predicted 
by the code and HFSS agree quite well all the way to -18 dB. However, the side lobes are, 
once again, off – the first two sidelobes agree in position, whereas the amplitude is off by 
more than 5 dB.  A reasonable guess why this happens is that the matrices involved with 
such a large problem become ill-conditioned and cannot be accurately handled by linear 
system solver routines used; this hypothesis is still under examination. Regardless, it can be 
safely stated that the code based on the hybrid method can be reliably used to predict the 
global radiation maxima even in SIW slot array radiation problems of greater complexity, 
such as the one considered. 

Figure 3.27  Normalized directivity of the corporate-fed slot array in the 0  plane 

at a) 14.1 GHz and b) 15.1 GHz  

a) 
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b) 

      

The final example contains five unit cells, centered around the xz plane (normal to 
the direction of periodicity). All ports are fired simultaneously, and the radiation patterns 

are calculated, as before, in the 0  plane. Here the structure had been simulated in HFSS 

using periodic boundary conditions, since the solver’s memory consumption already 
renders the simulation infeasible on a middle-range computer.  One may be concerned by 
the possible discrepancies between the behaviour of a finite structure, as implemented in 
the MATLAB code, and the infinite periodic structure of HFSS. However, in this case, the 
periodic device approximates the finite structure well (or rather the converse), which is a 
well-known result, though in this case justified only a posteriori. Even in this case the code 
took less time than HFSS to analyse the structure, again with a more modest memory 
requirement, though not significantly; the computational resources used are shown in the 
following table.  

Table 3.12 Solution data for the five-waveguide, two-layer corporate-fed slot array  

Configuration Intel i7-4790, 3.6 GHz, 8 GB RAM 

Solver MoM HFSS 

# unknowns        2 4 2315 175 18695z posts basis functionsN N N N       1 372 
293 

Runtime 39.5 min 
298 
min 

RAM (peak) 6.5 GB 
7.01 
GB  
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Figure 3.28  The normalized radiation pattern of a 5-cell corporate-fed slot array at 

15.1 GHz, 0  plane 

The total runtime of the code is smaller by a factor of roughly 7, while the RAM used is 

comparable to the HFSS analysis. Again, the ad-hoc method is significantly faster and 
therefore more convenient for any optimization task which might employ it as the main 
solver.   

3.3 Conclusion and future work 

 A numerical method is only as successful as its ability in predicting measurable 
quantities of interest. Despite its potential conceptual simplicity, utilitarian advantages or 
mathematical elegance, it may fall short of its goal – providing accurate results within the 
specified range of scenarios where it is supposed to hold true. Based on the extensive series 
of tests, a portion of which were presented in this chapter, we now round up the main 
characteristics of the method’s overall performance, from which we conclusively deduce its 
pros and cons.  

The preceding discussion can be condensed to the following set of statements: 

I. The method presented in this work offers a conceptually simpler  framework 
suitable for less error-prone construction of solutions to scattering problems of the 
SIW type -problems pertaining to planar parallel-plate waveguides containing 

a) single or multi-layered dielectric slabs, 
b) metal and dielectric cylindrical posts of arbitrary radius, 
c) narrow coupling and radiating slots. 

 As such, it enables one to handle a large variety of problems encountered in the 
 design of SIW devices. The conceptual simplicity and mathematical consistency, as 
 well as its advantageous field representation allow one to quickly develop 
 numerical routines applicable to both design and analysis. In addition, that very 
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 same field representation lends itself to application of techniques of asymptotic 
 approximation, potentially speeding up the analysis by an order of magnitude (see 
 e.g.  [22]). 

II. Judging by the conducted numerical tests, the method is applicable to both 
a) closed (resonant) devices of arbitrary shape (of course, provided the 

waveguide in question is planar), and 
b) radiating devices whose radiating elements are rectangular slots (although 

the method could be generalized to arbitrarily shaped ones). 
III. From the perspective of computational resource utilization HFSS, our in-house code 

outperforms HFSS’ FEM solver in all simulated scenarios, with a reduction factor in 
computation time ranging from 3 to 24, and a reduction factor in the dynamic 
memory used ranging from 1.1 all the way to 29, depending on the number of  DUT 
(device under test) elements and basis functions used. The low-end figures occurr 
when both the number of elements and number of basis functions is large, giving 
rise to large linear systems which must be solved iteratively. However, in most cases 
it is sufficient to consider no more than two longitudinal modes, seven azimuthal 
modes (i.e. modes with the azimuthal wavenumber in the [-3, 3] interval), and five 
slot basis functions; in a variety of problems, even less is required for excellent 
accuracy.  

IV. Due to its generality, the proposed approach is applicable to a wide range of 
dielectric profiles (i.e. configurations of layer thicknesses and permittivities); the 
sole stipulation being that the multi-layered framework not be used for radiating 
devices loaded with dielectric slabs whose respective layers have similar 

permittivities (“similar“ meaning 
// 5%i j i j      for any two layers i, j ). 

Moreover, the number of unknowns increases significantly less with the increase in 
permittivity and/or thickness of a dielectric layer compared to HFSS. This is due to 
use of closed-form eigenfunctions in the stratification coordinate, as opposed to 
HFSS’ tetrahedral-based meshing. 

On the other hand, the method possesses some limitations that could be the subject of future 
work: 

I. As of yet, the analysis of lossy-dielectric-loaded devices and/or lossy metal 
components is not supported. The inclusion of the said losses would be an important 
feature, especially at frequencies above 20 GHz. 

II. The method’s applicability to very large/complex devices requires further analysis. 
Though it has been demonstrated that it performs well for devices containing 
several hundred elements (up to roughly 700), it is necessary to investigate its 
stability and convergence when the number of elements is on the order of several 
thousand. It is quite possible that alternative solving routines for relevant linear 
systems will have to be adopted. 

III. Arbitrary-shaped slots should be supported, as a significant portion of practical 
devices rely on non-canonically shaped ones, such as dog-bone and crossed slots. 
For this purpose, one could use a general basis such as Rao-Wilton-Glisson 
functions. The penalty one would pay in that case, of course, would be the increase 
in computation time due to both triangulation and computation of a larger number 
of admittance terms with respect to the entire-domain basis approach.  

IV. The developed MATLAB code, based on the proposed method, should be optimized 
for faster execution and smaller memory footprint, to enable handling larger 
structures on medium-range configurations. At present, the code is a 
straightforward implementation of the proposed algorithm, with no memory 
management or code optimization techniques applied. Hence, it needs to be 
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rewritten in a faster, preferably compiled language such as C++ or Fortran. A 
possible acceleration could be accomplished by loop unrolling [23] due to the 
presence of a large number of for- and while-loops. A significant speed-up could be 
accomplished by parallelization using GPU computing (e.g. by porting the code to 
CUDA C++), a technique gaining momentum in the numerical electromagnetics 
community due to the widespread availability of powerful graphics processors. As 
for the memory footprint issue, primarily due to the storage of large matrices 
generated by mode-matching/MoM subroutines, one could simply store the said 
matrices to formatted files, clear them from the dynamic memory (RAM) and load 
them back when necessary. Of course, reading from the hard disk is several orders 
of magnitude slower than from RAM, but the potential advantage is the possibility 
of analysing larger structures on RAM-constrained desktops. Additionally, due to 
the presence of sparse matrices, standard sparse-matrix storage format can be used.  
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APPENDIX A – DERIVATION OF DUAL TE S-POTENTIALS AND 

THE REGULARIZATION OF THE GREEN’S DYADIC 

 As noted in subsection 2.3.2 A., dealing with the evaluation of slot admittance, the 
appearance of a double derivative of the TE S-potential in / 'z z  leads to a conundrum, due 
to the necessity of its explicit evaluation, if one intends to end up with a useful, closed-form 
expression. This short appendix provides the reader with a condensed exposition of the 
origin of this particular problem, along with its complete resolution within the framework 
of scalar Green’s functions formalism presented in [64]. In addition, the correct derivation 
of the S-potentials is presented, which consistently leads to physically sound fields, as 
opposed to some recent works where the same formalism was utilized. Moreover, we show 
how to regularize the Green’s dyadic in a relatively simple way, i.e. we demonstrate how the 
second delta-term in (5.1) is cancelled by the corresponding clandestine term contained 
implicitly in the TE part of the Green’s dyadic.   

 We begin by reiterating the general Green’s dyadic expression phrased in terms of 
scalar S-potentials 
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  (5.1) 

from which one notes that the last term will contain the “offending” double-derivative term. 
Indeed, we can easily identify the exact term upon using the identity 

  2 2ˆ ˆ ˆ ˆ
z t t      z z z z . It is clear that the double-derivative term will 

have the form "     ' ''

' , 'z t z t    r rS ,    " 21/ 'z z    . Now, we recall that the 

slot admittance is defined as 

        HM

,Y ' , ' ' d d 'i j j ij z     b r G r r b r r r   (5.2) 

which, according to previous considerations, contains the term 

            2
'

" ' ''

, 'Y ' , ' ' d d '
zz

i j j z t z t ij z 


         
  b r r r b r r rS  .   (5.3) 

It can be simplified upon a two-fold application of the Green’s theorem, allowing us to move 

the 
t  and '

t  operators onto basis functions /j ib , respectively 

        2
'

" '' '

, 'Y ' , ' ' d d '
zz

i j t j z z t ij z 


             b r r r b r r rS  .  (5.4) 

Since the basis functions pertaining to thin slots are directed along the largest dimension 

(which we denote as ˆ
i u and ˆ

j u , respectively), the transverse derivative operators become 

simple u-derivatives 

        2
j i'

" ''

, u ' uY ' b , ' b ' d d '
zz

i j j z z ij z 


           r r r r r rS  . (5.5) 

Though simplified, this admittance term contains a double-derivative of the S-potential, 
which has to handled carefully. Specifically, the direct differentiation yields a formal, but 
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incorrect solution inconsistent with the basic symmetry properties of transmission-line 
Green’s functions (2.78). Therefore, we proceed by exhibiting the Green’s function/S-
potential in the original spectral form [64, p. 447] (8a)
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             (5.6) 

where in passing from the first to the second line we have exchanged the integral and 
differential operators, since the S-potential and all its higher-order derivatives are 
interpreted as distributions.    

Now, it would be convenient if we could reexpress the derivative in 'z  in terms of the z one, 
since we do not know how to evaluate it directly. Fortunately, we may resort to the 
transmission-line (denoted as TL from here on) Green’s functions symmetry properties for 

aid. Indeed, recalling that the TE TL Green’s function "

zg is actually a scaled “impedance” 

Green’s function      " ", ' ' , 'zZ z z j z g z z , and that the impedance GF enjoys the 

symmetry property    " ", ' ',Z z z Z z z , we can apply the derivative in 'z  as 

    " "

' ', ' ',z zd Z z z d Z z z   .  (5.7) 

However, note that the RHS of (5.7) is nothing more than the LHS of the impedance GF 
transmission-line equation   (2.77), and implies 
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where use has been made of the symmetry property    " "', , 'I VT z z T z z    . Now, upon 

applying the z-derivative, and using the VT TL equation 

          " " " ", ' , ' 'V

zd T z z j z Z z Y z z z z      , (5.9) 

we arrive to the expression 
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where         
1

" " " ", ' ' ' , 'zg z z j z Y z Y z z


  , and      " "' ' / 'Y z z z  . Moreover, 

the TE admittance Green’s function  " , 'Y z z  can be easily shown to satisfy  

           
22 " " " ", ' ' ' 'zd z Y z z j z Y z z z      . (5.11) 

At this point we can further simplify the Fourier integral (5.6) by inserting (5.10) into it, 
yielding 
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               (5.12) 

First let us focus on the second, delta-function containing integrand, which we can rewrite 
as 
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However, the integrand is recognized as the completeness relation for Bessel functions 
[112, p. 696] 
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leading to 
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which, in turn, contains the azimuthal harmonic completeness relation   
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Hence, the second term is actually 
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However strange this term might appear at the moment, one should recall that a singular 
term of the exact same form appears in the Green’s dyadic (5.1) of opposite sign, implying 
that (5.17) cancels it exactly, leaving only the principal volume correction as the remaining 
singularity! Indeed, the second singular term appearing in (5.1) is 
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whereas the corresponding term of the TE dyadic term is, containing (5.17), is 
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where use has been made of the relation '

t t  . However, one notes that these terms have 

permeabilities differing in space-coordinate dependence; namely, T  contains   'z , 



Modélisation électromagnétique rapide de structures SIW par équations intégrales 

Josip Seljan - July 2016 

 

144 Appendices 

wheras "T contains  z ! One may rightfully ask how it is possible that the two terms 

annihilate each other. The answer lies in a property of the delta function in z. Firstly, it 

should be recalled that  ' r r  can be factored as  

  
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   r r  . (5.20) 

Secondly, the functions one can use to represent the z-delta  'z z  are not in the domain 

of the 
2

t t

t

 


operator. Hence, it follows that their commutator is zero, i.e. 
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  (5.21) 

Therefore, we can freely exchange the order of the transverse operator and the z-delta. The 
final step, leading to the cancellation of the aforementioned singular terms, rests on a simple 
application of the delta function definition 
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Applying this property to "

δT  as 
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  (5.23) 

finally leads to 
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δ δ 2 2 2 2
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T T r r r r  .        

  (5.24) 

Therefore, the Schwinger-Marcuvitz-Felsen formalism, in addition to being simpler and 
operationally more convenient, is self-consistent.  

 At this point, a comparison of singular terms obtained between various methods of 
Green’s dyadic derivation is in order.   

Firstly, we note that a similar approach based on Felsen’s methodology was used by Albani 
et al. in [104] and [18]. In the 2006 paper, correct S-potentials were derived, although the 

cancellation of the 
δT  operator was not shown explicitly. In passing from that one to the 

2011 paper, dealing with propagation in lossy-conducting-plates PPWs, the authors have 
picked up a dubious logarithmic term as part of the S-potential [18, p. 4025] (12) 
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 
ρ ρ ρ ρ ρ ρS   (5.25) 
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where subscript t  denotes the transverse part of the S-potential, and   is an arbitrary 
constant. This form is wrong from multiple perspectives. Firstly, from a physical 
perspective, since the admittance between two magnetic currents is expressed as an 
integral whose kernel contains an S-potential (see [18, p. 4026] (14)), it becomes clear that 
the admittance grows unboundedly, since the logarithmic term is unbounded at infinity. 

This can be seen more clearly if we represent the Neumann function in the  2

0H in series 

form [83, p. 358] 

        
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                         
  

  , (5.26) 

where 'tz k ρ ρ , 
0  is the digamma function [83, p. 360], and   is the Euler-

Mascheroni constant. Then from (5.25) it follows that the logarithmic term may be bundled 

with the logarithmic term of 
0Y  as  0

2 1 2
ln ln

2 t

z J z z
k



 

  
    

   
. If   is arbitrary, then 

any choice of   except / 2tk    will lead to a constant term rendering any subsequent 

sum or integral containing (5.25) divergent. If, however, / 2tk   is chosen, then the extra 

logarithmic term will asymptotically regularize (5.25) for 0tk  ; unfortunately,  as either 

tk   or ' ρ ρ (provided the other remains finite), it will diverge since 

 0 0J z   for z , rendering the extra logarithmic term dominant.  

However, if the magnetic currents’ partial contributions add out-of phase on average, the 

admittance may be finite as ' ρ ρ . Unfortunately, in general it is not possible, so only 

trivial (zero-amplitude) currents will produce a finite admittance when ' ρ ρ . 

Therefore, we are lead to the conclusion that (5.25) is not a valid form of the transverse 
portion of the S-potential, if the Green’s dyadic is defined as in (5.1)!  

A possible reason why this was not noted was that the constant    may be chosen to one’s 
preference (at least according to the authors), and the slots used in numerical examples 
were at too modest a distance from each other for this behavior to have been noted.  

An attempt can be made at mitigating the situation, by adhering to guidelines of Felsen and 
Marcuvitz [64, p. 448] – instead of dealing with the S-potential S  explicitly, one should 

consider the function '

t S , obtained by “borrowing” a '

t  operator from the ' ˆ z  and 
' ' ˆ  z  in (5.1). It is defined as 

      ' ' 2 2, ' , '; , '; d
j

t t t t z t t t

e

j
k g z z k k k k

 





        r r ρ ρS S  , (5.27) 

and allows one to apply  the 21/ t   operator under the integral sign, while still maintaining 

the convergence of the integral. This then implies a redefinition of the Green’s dyad, 
consequently making the subsequent analysis significantly more tedious since one has to 
deal with vectors instead of scalars at this stage, which is a high price to pay. In that case, 
however, we still end up with derivatives of the logarithmic term which are, in fact, spurious 
(i.e. lead to fields not satisfying Maxwell equations). Even worse, they do not get annihilated 
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by any other terms of the Green’s dyadic. Therefore, sooner or later one must discard them 
explicitly, but this procedure lacks mathematical rigor. In sum, (5.25) is an invalid form, and 
should be avoided.  

 To explicitly see how the error can come about, consider again the Green’s dyadic, 
repeated here for convenience 
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The possibility of using this representation relies on the ability to consistently define the S-
potentials, which are, by definition, related to scalar Green’s functions as 

    2

1
, ' G , '

t
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

r r r rS  . (5.28) 

Now, as was shown in subsection 2.2.1.6, p. 48, one can tackle the explicit evaluation of  
(5.28) by expressing the Green’s function as a Fourier integral 
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 r rS   (5.29) 

The question now is how to represent the action of the 21/ t   operator. Do we move it 

inside the sum, and if we do, how does it act on the summands? Firstly, we can recast (5.29) 
into a more compact form using the standard trick of extending the range of integration 

from  0,  to  ,   by the identity            2 1
/ 2n n nJ z H z H z  , and the circuital 

relation        1 2j jn

n nH ze e H z  , yielding 
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           (5.30) 

where the lower integration limit je   indicates that the integration contour goes slightly 
below the negative real axis where the logarithmic branch cut due to the Hankel function 

was stipulated, i.e. the branch cut is avoided.  In addition,  max , '      and 

 min , '     . Furthermore, we may exchange the summation and the integration 

operator  
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Since the z Green’s function does not depend on the index of the sum, one can then apply 
the Gegenbauer addition theorem for cylindrical harmonics, giving 
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At this stage, we have several options at our disposition of how to proceed. One is to 

exchange the 21/ t   and the integral operator. Then two essentially equivalent procedures 

lead to a convergence issue. Firstly, since the integral defines a Fourier integral of a 

distribution, one can identify the 21/ t  operator as [113, Ch. 11], [64, Sec. 5.2b] 

 
2 2

1 1

t tk


 


 , (5.33) 

turning the integral into 
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One immediately notes that this integral is not well-defined due to the 0tk   non-

integrable singularity of order    ln /t tO k k  . An option one has at making sense of it is to 

perform regularization (see e.g. [114] vol. I). However, this is quite difficult since it opens 
the question of whether it can be done uniquely. Namely, a Cauchy principle value 
redefinition does not exist, since the integrand is both too singular due to the logarithmic 

term of the Hankel function and not odd in 
tk   so that the negative and positive contribution 

around the singular point cancel. Another option may be to throw out terms in the series 

representation of the Hankel function up to order  O z  (recall that 'tz k  ρ ρ ). In that 

case we might end up with a finite generalized function representing the potential, though 
it is highly questionable whether that function will lead to fields satisfying Maxwell 
equations. Perhaps in some weak sense, yes, but the question then is whether it may be 
suitable for implementation in a numerical code, and whether it gives good predictions. This 
is a point to be investigated.  

 From the discussion above, it follows that the 21/ t  operator should not be moved 

inside the integral, unless its introduction into the integrand results in a well-defined 
integral (possibly in an improper sense). Leaving it outside makes possible the evaluation 

of the Green’s function in closed form, which will be represented in the 
tk  basis, upon 

applying the residue theorem  
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where  'w z is the weight of the Sturm-Liouville problem in the z-coordinate. If now we 

recall the proposition put forth in subsection 2.2.1.6, p. 49, the 2

t  operator becomes 2

tik  

in this basis, and therefore, within the framework of the Borel functional calculus (Theorem 
VIII. 5, [84]) 
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This, in fact, is the correct form of the S-potential. Similar results were obtained for bounded 
cross-section geometries in [115], and both bounded and unbounded in [104], containing a 
single-layer dielectric medium. Of course, we are dealing with piecewise-constant, stratified 
planar media, which contain the single-layer medium scenario as a special case.  
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 As for the incorrect form of the S-potential, it could have come from the purely 
formal calculation  
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  (5.37) 

 

where one then proclaims 
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or  
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  (5.39) 

Herein lies the key error – the logarithmic Green’s function is truly the solution to the 

Poisson equation (5.39), but for a different 2

t operator! Indeed, an operator is not defined 

only by its form, but by its domain as well. The domain of the transverse Laplacian operator 
2

t we have started with is the vector space of functions satisfying the Sommerfeld radiation 

conditions. However, such a Laplacian cannot be inverted to yield (5.38). Therefore, the 

moral of the story is – there are 2

t operators, and then there are other 2

t  operators.  

Hence, the solution (5.39) is purely formal, since the 2

t  operator’s domain is on functions 

satisfying the Sommerfeld radiation condition, which stipulates the finiteness of fields and 
is a necessary condition for the uniqueness of solution. On the other hand, (5.39) is outside 
the said domain, rendering the potential divergent. Therefore, as stated already, a 
differentiation of the potential must be effected which then produces convergent fields; 
however, the problem is then the interpretation of the derivatives of the logarithmic terms, 
and their consistent removal.    

 Now, returning to the original problem, the evaluation of the first integrand rests on 

the possibility of deriving the “odd”  " , 'zg z z function in closed form. In what follows we 

show how it can be done in a straight-forward way. Firstly, we note from (5.11) that the 

impedance TE Green’s function  " , 'Y z z represents the current at point z  excited by a 

negative TE voltage source connected in series at point 'z  of the considered transmission 
line. Hence, the boundary conditions are such that  
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  (5.40) 

where 1,2z  are the z-coordinates of bounding PEC plates,  
b

a
x




denotes the difference 

between the bracketed quantity at point b  and point a , i.e.    x b x a , 
nd  is the z-

coordinate of the interface between two adjacent dielectric layers, and   is an arbitrarily 
small positive real number. The same boundary conditions apply to the dual TE Green’s 

function  " , 'zg z z . For concreteness, we will assume that the PPW has two layers, which is 

the case we investigate in numerical experiments. Of course, the method of the derivation 
of the dual Green’s function can be easily extended to the case of an arbitrary number of 
layers. Now, as done for all the other scalar Green’s functions, we shall derive this by the 
characteristic Green’s function approach, which as a first step requires one to find the 

characteristic eigenfunction. First, we look for a function  y z  which satisfies the same 

boundary conditions as the ones found in (5.40), and satisfies the homogeneous Sturm-
Liouville equation 
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where       
1

" "w z z Y z


 . From the first boundary condition in (5.40), we guess its 

general form as 
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  (5.42) 

  

1,2t  being the layer thicknesses (indexed from the bottom up) and 
1 2h t t  . From here one 

relates the unknown coefficients A  and B  by enforcing the continuity of  y  at the layer 

interface 
1z t  as  
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  . (5.43) 

Using this in (5.42) and applying the continuity of    zw z d y z , interpreted as the dual TE 

voltage, one obtains the dual TE eigenfunction dispersion relation which is, in fact, the one 
for TE modes (2.148) 

    '' '' '' ''

1 ,1 1 2 ,2 2ctg ctg 0 ,i iY t Y t      (5.44) 

i  denoting the mode index. Hence, the dual TE functions have the same spectrum as the 
standard TE ones! As it is more convenient to deal with normalized eigenfunctions, we 
perform the weighted scalar product to obtain the modal normalization constant 
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      (5.45) 

Then, as shown in subsection 2.2.1.7, the characteristic Green’s function can be written 
down as 

    
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where       
1

" "' ' 'i iw z z Y z


 and "2

zi i  , i.e. the i-th solution of the dispersion 

relation (5.44). Hence, inserting this form into the construction integral (2.90) we obtain 
the dual TE scalar Green’s function, and by applying the inverse transverse Laplacian 
operator, the pertinent S-potential is finally obtained.  
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It is interesting to consider the limit of this potential when 
2 1   (

1 2, 0t h t    ). 

Actually, it is enough to consider the limit of the product of the weight and the square of the 
normalization constant 

  
2 1

"2lim ' m
i iw z c

h 




    , (5.48) 

where 
m  is the Neumann number, which is equal to 1 for 0m   and 2 otherwise. Since the 

TE dispersion equation becomes equal to the TM one, it follows that the dual TE S-potential 
will have the same spectrum as the TM S-potential. In fact, according to (5.48), it becomes 
equal to the TM S-potential! This agrees with results obtained by Albani et al.  [104]. 
However, one should be careful with its numerical implementation for multilayered 
scenarios, since its limiting behavior is unstable. Namely, when one has dielectric layers 
having permittivities close to each other, and when the thickness of one of the layers 
becomes small compared to the total height of the PPW under consideration (roughly less 
than a tenth of the total height), (5.47) does not start behaving as the single-layer TM S-
potential. This is due to the behavior of the TE dispersion equation (5.44), which does not 
“mimick” the single-layer TM dispersion equation for layer thicknesses and permitivities 
tending to the single-layer case.  
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APPENDIX B – DIELECTRIC-POST SCATTERING IN AN SIW 

DEVICE 

  

 As was indicated in section 2.2.1.8, when dielectric posts are present in an SIW 
device, TE and TM modes cannot exist independently. To be specific, even though one can 
devise excitations injecting solely TM modes into a PPW, the boundary conditions on 
dielectric posts require the existence of both TM and TE modes. Hence, one cannot apply 
boundary conditions for each mode separately, as is the case when only PEC posts are 
present, leading to more involved construction of and solution to linear systems in post-
scattering amplitudes. This section deals with demonstrating how the post-scattering 
amplitudes may be obtained in the most straightforward way.  

 We begin by reiterating the problem – consider a PPW filled by either a single- or a 
multi-layer dielectric medium, with a number of dielectric and PEC posts embedded inside. 
The specific post arrangement is not important, unless the PPW is excited by a waveguide 
port; then there must exist an array of PEC posts confining the field to a limited volume of 
the PPW sufficiently strongly. Otherwise the approximation of the equivalence principle 
used to model the waveguide port fails to hold. If a coaxial port is present, no such 
restrictions are necessary. Finally, with all the requirements specified, what is the 
electromagnetic field inside the PPW?  

As was shown in section 2.2.1.8, the starting point to the answer is to write down the 
boundary conditions on each and every post; if the post under consideration is PEC, the 
boundary condition to be satisfied is  

 ˆ 0
q

q imp p q R
p q




 
    
 

n E E E  , (5.49) 

where ˆ
qn is the normal to the surface of post q,  impE is the electric field in the PPW due to 

an impressed source,  with all obstacles (i.e. posts, slots etc.) removed, pE is the electric 

field which post p scatters toward post q, and qE is the electric field scattered by post q       (

qR  being its bounding surface). If, on the other hand, the post is dielectric, one enforces   
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  (5.50) 

Keeping in line with the formalism used to analyze post-scattering, we expand the magnetic 
fields in the second boundary condition of (5.50)  as  
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where s  denotes the index multiplet  , , ,i m r q     containing all the indexes pertaining to 

the field launched by an impressed source – i denoting the source, m the order of the 
longitudinal mode, r the order of the azimuthal mode, whereas q denotes the post.  Likewise, 
p and q  denote the index multiplets of the fields scattered by arbitrary posts p and q, and 

superscripts e and h denote the TM and TE functions, respectively.  are amplitudes of 

modes excited by impressed sources, whereas the functions denoted by over-hats signify 
vector modes of the field expansion inside the dielectric post.   

We proceed as before, by noting first that the field is expressed in the coordinate system 
centered on post q, and that each of the expansions in (5.51) is, among other bases, over the 

angular (azimuthal) spectrum, i.e. in the  qjr
e


 base. Since the terms in the expansions 

belonging to different r are orthogonal, the only way for (5.51) to hold is if it holds for every 

r independently! In other words, we multiply (5.51) by qjv
e


( v  ) and integrate it over 

q  from 0 to 2 , which annihilates all terms r v .  Hence, we have simplified the 

enforcement of (5.51) by having performed the scalar product in q , allowing us to focus 

only on terms r v . In order to obtain a further simplification, we might try to perform the 
scalar product in z, which will, hopefully, enable us to consider only terms of fixed order m. 
Though this was possible for problems of scattering in PPWs loaded with PEC posts, 
unfortunately, this is not the case here since taking the scalar product of (5.51) with a 
longitudinal eigenfunction (TE or TM) of order l  will not annihilate all terms m l ; as a 
consequence, we are forced to consider several different modes at once.  To see this, we first 
digress slightly to reconsider the general form of M and N functions, given by 
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nZ being either Bessel functions 
nJ  or Hankel functions of the second kind 

 2

nH  , cN
 being 

a suitable N function constant (depending on the stratification), and e

mi  and h

mv  being the 

longitudinal TM and TE eigenfunctions, respectively, as defined in section 2.2.1.6. The N 
function can be cast into a somewhat more illuminating form upon using the identity 
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  (5.52) 

Moreover, to facilitate manipulation of  (5.51), we simplify it by considering the action of 

the post-surface normal ˆ
qn  cross-product on the terms in the expansion. Firstly, we note 

that in the case of M functions, the cross-product acts as  ˆ ˆˆ ˆ ˆ
qq q n   n z n z z ,  

where 
qn denotes the derivative in the direction normal to the post surface. As for the N 

functions, it can be shown, by fairly straightforward algebra, that any term in the expansions 
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of (5.51) containing the aforementioned functions can be simplified using 

 2 2 ˆˆ ˆˆ ˆ ˆ
qq q z t t z t q          n z n z z . Now, using these relations in (5.51), 

we obtain two equations to be solved for; one for the z-component of (5.51) 
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  (5.53) 

whereas for the q  - component, surprisingly relating only TE components, we obtain 

 ˆ ;h h h h h h h h

sq sq pq pq q q q q
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the  functions are scalar potentials pertinent to each of the types of fields, whose explicit 
forms will be given shortly. At this point, one should recall that these functions contain 

longitudinal eigenfunctions e

mi  and h

mv . If the dielectric filling the waveguide is not 

stratified, then we can directly proceed to finding the hA  amplitudes by solving (5.54) in 
the exact same manner as one does when only PEC posts are present – by performing the 

scalar product between (5.54) and h

lv , one obtains for each longitudinal mode a linear 

system of the form  

  T A B
h h h h

m m mm
   , (5.55) 

whose solution yields the scattering amplitudes vector  A B
h h

m m . This is possible since 

both the field outside and inside the dielectric cylinders can be expanded using identical 

longitudinal eigenfunctions h

lv , which are orthonormal    ,h h

m l mlv z v z  . If, on the 

other, the guide’s dielectric filling is stratified, this is not true, and one must consider a more 
general linear system  since the scalar products between longitudinal eigenfunctions 
outside and inside the cylinders will in general not be zero.  

 

First, let us see how the single-layer filling scenario could be handled. To recapitulate, the 
scalar product with a generic-order azimuthal eigenfunction has already been performed. 
This implies that for a given post q we can consider an equation which, of all its terms in the 
expansion of the field scattered off it, will contain only the terms having a fixed-order 
azimuthal dependence, i.e. r v . The scalar potentials and coefficients in (5.54) are, 
explicitly, 

        

   

'
2' '

, , 22 2

, ,

1 1 1
' ' d ' ,

4

,

q

q

jrh h h

q m r r m q mh

m

jrh h h

s m r r m q m

j D H k R e v z
k j k

J k R e v z





    

  

    

   

 M r r
 



Modélisation électromagnétique rapide de structures SIW par équations intégrales 

Josip Seljan - July 2016 

 

154 Appendices 

           
     

   

2

, ,

2

, ,

, , ,

1 ,

ˆ

q qp

q

q

n r jr j n rh h h h

p q m n r m q n r m pq m

jrh h h

q m n r m q m

jrh h h

q m n r q m q m

J k R H k R e e v z

H k R e v z

J k R e v z

 





    

 

  

  

     

   

   

 

where ' 'q qR   ρ ρ , 
q qR   ρ ρ , and 

pq p qR   ρ ρ . In addition, we reiterate the 

general form of longitudinal eigenfunctions and the associated orthonormality relation 
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  (5.56) 

First, we write down the boundary conditions for all the posts (PEC and dielectric), 
obtaining for each post equations of the form (5.53) and (5.54). Then, by taking the scalar 

product of (5.54) of each post with h

lv  , a set of equations for each considered mode l is 

obtained  
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The obtained system of linear equations may be rewritten as  
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  (5.59) 

Casting this equation in matrix form, and solving for ,h hA B  amplitudes, we completely 

determine the total TE field. On the other hand, we still have to solve (5.53) for ,e eA B , 

which we reiterate here for convenience 

ˆ ˆ .
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To solve the system of equations we proceed as before; firstly by taking the scalar product 
with a generic azimuthal eigenfunction of order v , yielding   
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where, with a slight abuse of notation, it is understood that ,
q q

e e h h

n z        , 

and the q  dependence of the potential functions has been integrated out.    

One notes that this leads to a system of equations in N N Nposts z     unknowns (assuming 

the TE scattering amplitudes have been found from (5.58)) , Nz
being the number of 

longitudinal, while N  the number of azimuthal modes considered. In order to arrive to a 

simplified linear system, we take the scalar product of the equations of the form (5.60) for 

each post with a generic longitudinal TM eigenfunction  e

li z . It should be clear that the 

orthonormality of the longitudinal TM eigenfunction set will lead to the annihilation of all 
TM terms of order r l . Fortunately, for the single-layer case this same scalar product with 
TE terms will result in their annihilation as well, since  
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Now, if we are to arrive to a fully determined linear system, we can perform the scalar 
product of each of the equations with longitudinal TM eigenfunctions up to the maximal 
order considered, i.e. 
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resulting in 
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where the tilde denotes the result of the scalar product with a longitudinal eigenfunction, 

i.e.  ,m li z   . If the TE scattering amplitudes are known, we can bundle the TE 

terms with the excitation terms to give 
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  (5.63) 

from which we can readily arrive to the final linear system to be solved in a few steps. Firstly, 
we recognize that all the potential functions   are expressed in the coordinate system 

centered on a given post q, i.e.     , ,q q q qR     ρ ρ , and that 1

q qn q RR    . 

Hence, the explicit form of the potential functions involved is 
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  (5.64) 

It should be noted that for angular order 0v  the TE terms vanish due to the presence of 

the jv  factor (resulting from differentiation with respect to q ), therefore the TM and TE 

modes are formally decoupled, but since the higher-order TE modes are involved - which 
do couple with higher-order TE modes - this fact does not alleviate the complexity of 
solution. 

Finally, the system (5.63) can be recast into a more convenient form upon dividing each of 

the pertinent equations by   /e

v l q qJ k a a' , yielding 
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where   
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  (5.66) 

Then it is a simple matter of writing this system down in matrix form and solving for the TM 
scattering amplitudes, which completes the mode-matching analysis.   

A few comments on the features of such systems inherent in the analysis of practical devices 
is in order. Firstly, most such devices are designed to allow the propagation of solely the 
lowest order TM mode (m=0 or 1, depending on the mode numbering convention), with the 
next-to-lowest modes severely suppressed. As such, the amplitudes of both the TM and TE 
higher-order modes scattered off of posts are negligible compared to the lowest-order mode 
at even modest distances from the source/scatterer. Consider, for example, the structure 
analyzed in 3.2.4, composed of stacked guides, each 1.54 mm high and loaded with a Rogers 
Duroid 4003 dielectric slab of permittivity 3.55 , operating at 14.25 GHz. A simple back-
of-the-envelope calculation shows that the amplitude of the next-to-lowest modes (TM or 
TE) is on the order of 10e-06 compared to the lowest-order mode, already at a distance of 
half a wavelength away (roughly 0.56 cm)! Therefore, in most scenarios one is safe to 
neglect higher order modes without notably sacrificing accuracy. For example, we could 
have substantially simplified the analysis expounded in this appendix had we simply set all 
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modal scattering amplitudes ,m mA B  to zero for m>0, which would lead us, essentially, to an 

analysis similar to the one presented in subsection 2.2.1.8.   

If the PPWs are loaded with layered dielectrics, and dielectric posts are present (e.g. air 
holes, phase-shifting or reflection-cancelling posts etc.) the scattering can be treated in the 
exact same way as for the single-layer case, though in that case there is an ambiguity in 
defining the scalar product in z analogous to  (5.61) which leads to a discrete set of 
equations (along with the standard scalar product in  ).  Namely, one encounters the scalar 

product between the z-derivatives of the TE modal functions and the TM ones, i.e. ,h e

z m lv i 

, which can be defined in several ways. Firstly, one can use the definition of the TE scalar 
product 
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which we argue to be less “natural” than the alternative, which is the TM scalar product 
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By “less natural” we mean “less convenient” in the following sense. The majority of the field 
energy will be carried by TM modes, i.e. they will have significantly larger amplitudes than 
TE modes. Taking the scalar product as defined in (5.68) of (5.60) will have the effect of 
annihilating the TM terms m l , while the TE terms will persist, but will be of small 
amplitude. In practice, one can then completely neglect the TE terms, leaving only TM modes 
of order m l . This leads to a simpler linear system than the one that would have resulted 
had we adopted (5.67) as the scalar product definition, i.e. the T-matrices will be less 
populated. 

The preceding discussion makes the following observations clear: 

I. When an SIW device contains only PEC posts, if the source launches only a single 
type of modes into the PPW, i.e. either TM or TE, the scattered field will contain 
only those modes.  

II. If, on the other hand, the PPW contains dielectric posts, and if the source launches 
only a single type of modes, the scattered field will contain the other type of modes. 
In most cases of interest, the dielectric posts will weakly scatter the other type, 
which will decay severely even at relatively small distances from the scatterer.  

III. From II. It follows that one can simplify the post-scattering problem by neglecting 
the weakly scattered type of modes without significantly affecting the accuracy of 
the solution. 

IV. When more than one mode propagates in an SIW device containing dielectric 
posts, there will be significant mode-coupling, leading to larger-sized matrices that 
have to be inverted and, consequently, a significantly larger computation time with 
respect to the low mode-coupling scenario, which can be estimated as follows. 
Consider the T-matrices inherent in the low-mode coupling scenarios. There will 

be one for each longitudinal mode, of size  dim N Nposts T . Let us assume 

that the inversion scheme is a standard Gauss-Seidel method, which is of 

complexity  3O n , n being the number of rows or columns of the matrix to be 

inverted. Hence, the time necessary to compute the inverse of 2Nz such matrices 

will be roughly    
3

1 N Nz posts    T . Consider now the more exact 
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mode-coupling scenario where, generally, the coupling between all modes must be 

taken into account. Then the T-matrix is of size  'dim N Nz posts   
T , and 

the time necessary to invert it is     
3

' 1 N Nz posts      
T ; the ratio of the 

times is then roughly    1 1 2/ z    'T T . To give a sense of how much this 

might be in practice, one usually considers no more than N 3z  , giving the 

computational time larger by a factor of 36 if either mode-coupling is strong and 
we must use the exact approach to mode-matching (as expounded in this 
appendix) or the mode-coupling is low but we are being rigorous by using the 
more exact approach (i.e. we do not neglect higher-order modes).          
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