Thèse soutenue

Real-time imaging through fog over long distance

FR  |  
EN
Auteur / Autrice : Swapnesh Panigrahi
Direction : Mehdi AlouiniJulien Fade
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 13/07/2016
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Sciences de la matière (Rennes ; 1996-2016)
Partenaire(s) de recherche : ComuE : Université Bretagne Loire (2016-2019)
Laboratoire : Institut de physique (Rennes) - Institut de physique (Rennes)

Résumé

FR  |  
EN

L'imagerie à travers les milieux turbides comme le brouillard, les tissus, les colloïdes, etc. répond à plusieurs besoins de la vie courante. L'imagerie à travers de tels milieux diffusants est un défi auquel peuvent répondre les nouveaux systèmes d'imagerie, la théorie de l'information et l'étude des lois de transport de la lumière dans les milieux aléatoires. La thèse est divisée en deux parties adressant deux modalités d'imagerie différentes, à savoir : l'imagerie de contraste polarimétrique et l'imagerie modulée en intensité. Dans les deux cas, des systèmes d'imagerie en temps réel sont proposés et mis au point. Leurs performances sont évaluées à la fois théoriquement et expérimentalement. Dans la première partie de la thèse, une caméra polarimétrique à deux canaux instantanés conçue autour d'un prisme de Wollaston est utilisée pour imager de manière optimale une source de lumière polarisée noyée dans un brouillard. Une expérience en situation réelle a été mise en place à proximité du campus de Beaulieu à Rennes. La source est placée sur une tour de télécommunication située à plus d'un kilomètre du système imageant. Les données acquises dans diverses conditions météorologiques montrent que l'efficacité de cette caméra polarimétrique dépend de la corrélation du bruit de fond dans les deux images initiales. Ceci a été confirmé grâce à une analyse fondée sur la théorie de l'information qui montre que le contraste polarimétriques maximal est obtenu par une combinaison linéaire des deux canaux polarimétriques dont la pondération dépendant de la corrélation du bruit de fond dans les deux canaux. Un système de détection, intégrant cette représentation polarimétrique optimale, a été développé pour explorer de bout en bout les capacités offertes par l'imagerie polarimétrique à deux canaux à travers le brouillard. Ces études trouvent des applications directes dans le transport par temps dégradé, y compris pour l'aide à l'atterrissage d'aéronefs. Dans la même logique, la deuxième partie de la thèse porte sur l'apport de la modulation d'intensité plein champ pour imager les photons balistiques dans les milieux diffusants. En utilisant de concert la théorie de la diffusion et la théorie de l'information, nous avons pu montrer que, pour un budget de photons donné, il existait une fréquence de modulation minimale pour laquelle le filtrage de photons balistique devient efficace. Cette fréquence dépend des propriétés de diffusion du milieu intermédiaire et se trouve être dans la gamme du MHz en situation réelle. L'imagerie en temps réel à de telles fréquences étant un vrai défi, nous avons proposé un système de démodulation plein champ inédit basé sur l'utilisation d'un cristal électro-optique. Ce système d'imagerie, dont nous avons breveté le principe, est en mesure de démoduler avec une caméra standard une scène en temps réel et en plein champ à des fréquences de plusieurs MHz (voire GHz) sans synchronisation de phase. Un prototype de ce système a été développé permettant de confirmer qu'il était robuste, portable et rentable. Le travail présenté dans cette thèse ouvre la voie à la mise en œuvre de systèmes d'imagerie de pointe fonctionnant dans des situations réelles, allant de l'imagerie biomédicale, à la sécurité.