Thèse soutenue

Étoiles à neutrons chauds relativistes avec rotation différentielle rapide

FR  |  
EN
Auteur / Autrice : Miguel Marques
Direction : Micaela Oertel
Type : Thèse de doctorat
Discipline(s) : Astronomie et Astrophysique
Date : Soutenance le 28/09/2016
Etablissement(s) : Paris Sciences et Lettres (ComUE)
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : LUTH Laboratoire Univers et Théories (Observatoire de Paris - Section de Meudon) - Laboratoire Univers et Théories / LUTH
établissement opérateur d'inscription : Observatoire de Paris (1667-....)
Jury : Président / Présidente : Philip Tuckey
Examinateurs / Examinatrices : Micaela Oertel, José Pons, Michel Rieutord, Loïc Villain
Rapporteur / Rapporteuse : José Pons, Michel Rieutord

Résumé

FR  |  
EN

Les étoiles à neutrons sont parmi les objets les plus extrêmes dans l'univers. Elles sont des étoiles compactes, nées à la suite d'une explosion de supernova gravitationnelle, au point final de l'évolution stellaire. Le champ gravitationnel y est très fort, et la matière à l'intérieur atteint des densités extrêmement élevées. Elles sont donc des ''laboratoires'' prometteurs, non seulement pour tester le régime de champ fort en relativité générale, mais aussi pour en apprendre davantage sur la physique nucléaire à haute densité, qui actuellement ne peut pas être reproduit avec des expériences terrestres. Ainsi, les étoiles à neutrons nous permettent d'adresser des questions telles que l'existence éventuelle de particules autres que nucléons à haute-densité. À cause de la naissance violente de ces objets, les étoiles à neutrons très jeunes, que l'on appelle proto-étoiles à neutrons, sont également très chaudes, et souvent en rotation différentielle rapide. Dans cette thèse nous avons pour but de développer un modèle stationnaire d'une telle proto-étoile à neutrons.Ainsi, nous présentons une nouvelle méthode pour calculer numériquement les équations d'équilibre d'un fluide parfait relativiste, axisymétrique et stationnaire, en rotation différentielle et à température finie, valable pour une équation d'état réaliste. Nous présentons en détail le code (accessible au public) développé. Nous avons appliqué ce code avec des nouvelles équations d'état réalistes à température finie, basée sur une théorie relativiste du champ moyen, en incluant tous les degrés de liberté hyperoniques. Nous avons calculé des modèles relativistes stationnaires de proto-étoiles à neutrons en rotation différentielle rapide. Nous allons discuter les applications de nos modèles pour explorer plus en détail la physique de ces objets.