Thèse soutenue

Le quasi-satellites et autres configurations remarquables en résonance co-orbitale

FR  |  
EN
Auteur / Autrice : Alexandre Pousse
Direction : Philippe RobutelAlain Vienne
Type : Thèse de doctorat
Discipline(s) : Mécanique céleste
Date : Soutenance le 30/09/2016
Etablissement(s) : Paris Sciences et Lettres (ComUE)
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique céleste et de calcul des éphémérides (Paris ; 2000-....) - Institut de Mécanique Céleste et de Calcul des Ephémérides / IMCCE
Jury : Président / Présidente : Jacques Féjoz
Examinateurs / Examinatrices : Philippe Robutel, Alain Vienne, Anne Lemaître, Antonio Giorgilli, Andrea Venturelli
Rapporteur / Rapporteuse : Anne Lemaître, Antonio Giorgilli

Résumé

FR  |  
EN

L'ensemble des travaux menés au cours de cette thèse concerne l'étude de la résonance co-orbitale. Ce domaine de trajectoires particulières, où un astéroïde et une planète gravitent autour du Soleil avec la même période de révolution, possède une dynamique très riche liée aux célèbres configurations équilatérales de Lagrange, L4 et L5, ainsi qu'aux configurations alignées de Euler, L1, L2 et L3. Un exemple majeur dans le système solaire est donné par les astéroïdes « troyens » qui accompagnent Jupiter au voisinage des équilibres L4 et L5. Une deuxième configuration étonnante est donnée par les satellites Janus et Épiméthée qui gravitent autour de la planète Saturne ; suite à la forme décrite par la trajectoire d’un des satellites dans un repère tournant avec l’autre, la dynamique résultante est appelée « fer-à-cheval ». Un nouveau type de dynamique a été récemment misen évidence dans le contexte de la résonance coorbitale : les « quasi-satellites ». Il s’agit de configurations remarquables où, dans un repère tournant avec la planète, la trajectoire de l’astéroïde correspond à celle d’un satellite rétrograde. Des astéroïdes accompagnant les planètes Venus, Jupiter et la Terre ont notamment été observés dans ces configurations. La dynamique des quasi-satellites possède un grand intérêt, pas seulement parce qu’elle relie les différents domaines de la résonance co-orbitale (voir les travaux de Namouni, 1999) mais aussi parce qu’elle semble faire le pont entre les notions de satellisation et celles de trajectoires héliocentriques. Cependant, bien que le terme « quasi-satellite'' soit devenu dominant dans la communauté de mécanique céleste, certains auteurs utilisent plutôt la terminologie « satellite rétrograde » révélant ainsi une ambiguïté sur la définition de ces trajectoires. Les récentes découvertes autour des exo-planètes ont motivé le développement de travaux concernant la résonance co-orbitale dans le problème des trois corps planétaire. Dans ce contexte Giuppone et al. (2010) ont mis en évidence (par une méthode numérique) les quasisatellites ainsi que des nouvelles familles de configurations remarquables : les orbites « anti-Lagrange ». La troisième partie de thèse présente alors une méthode analytique pour l'étude planétaire, permettant de révéler analytiquement les orbites anti-Lagrange ainsi qu'une esquisse d'étude des quasisatellites en adaptant à ce contexte plus général la méthode présentée dans la seconde partie. Pour ces raisons, la première partie de cette thèse a consisté à clarifier la définition de ces orbites en revisitant le cas circulaire-plan (trajectoires coplanaires avec la planète qui gravite sur une orbite circulaire) dans le cadre du problème moyen. Dans la deuxième partie de cette thèse, nous avons développé une méthode analytique apte à explorer le domaine des quasi-satellites dans le cadre du problème moyen. Nous avons réalisé cette exploration dans le cas circulaire-plan et proposé une extension aux cas excentrique-plan et circulaire-spatial.