Explorer des circuits quantiques avec une architecture cQED : application à des mesures de compressibilité
Auteur / Autrice : | Matthieu Desjardins |
Direction : | Takis Kontos |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 16/12/2016 |
Etablissement(s) : | Paris Sciences et Lettres (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Physique en Île-de-France (Paris ; 2014-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Pierre Aigrain (Paris) |
Etablissement de préparation de la thèse : École normale supérieure (Paris ; 1985-....) | |
Jury : | Examinateurs / Examinatrices : Takis Kontos, Jesper Nygård, Klaus Ensslin, Hélène Bouchiat, Cristian Urbina, Christoph Bruder |
Rapporteur / Rapporteuse : Jesper Nygård, Klaus Ensslin |
Mots clés
Résumé
Les circuits électroniques mesurés à des températures cryogéniques permettent d'étudier le comportement quantique des électrons. En particulier, les circuits de boites quantiques sont des systèmes accordables modèles pour l'étude des électrons fortement corrélés, symbolisée par l'effet Kondo. Dans cette thèse, des circuits de boîtes quantiques à base de nanotube de carbone sont intégrés à des cavités micro-onde coplanaires, avec lesquelles l'électrodynamique quantique en cavité (cQED) a atteint un degré de contrôle remarquable de l'interaction lumière-matière. Les photons de la cavité micro-onde sont ici utilisés pour sonder la dynamique de charge dans le circuit de boîtes quantiques. Plus précisément, la cavité micro-onde de grande finesse nous a permis de mesurer la compressibilité du gas d'électrons dans une boîte avec une sensibilité sans précédent. Des mesures simultanées de transport électronique et de la compressibilité montrent que la résonance Kondo observées dans la conductance est transparente aux photons micro-ondes. Cela révèle le gel de la dynamique de charge dans la boîte quantique pour ce mécanisme particulier de transport d'électrons et illustre que la résonance Kondo à N-corps dans la conductance est associée aux corrélations issues des fluctuations de spin d'une charge gelée. Nous étudions aussi dans cette thèse la possible émergence d'une nouvelle quasi-particule, appelée état lié de Majorana, et qui serait sa propre anti-particule. Dans ce but, une grille ferromagnétique a été placée sous le nanotube pour créer un couplage spin-orbit artificiel. L'observation d'états d'Andreev dans un tel dispositif est un premier pas prometteur vers la détection avec une architecture cQED d'états liés de Majorana dans les nanotubes de carbone.