Thèse soutenue

Le Gaz de Bose à deux dimensions dans des potentiels en boîtes
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Laura Corman
Direction : Jean Dalibard
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 02/06/2016
Etablissement(s) : Paris Sciences et Lettres (ComUE)
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Kastler Brossel (Paris ; 1998-....)
Etablissement de préparation de la thèse : École normale supérieure (Paris ; 1985-....)
Jury : Examinateurs / Examinatrices : Jean Dalibard, Tilman Esslinger, Hélène Perrin, Zoran Hadzibabic, Gilles Montambaux, Jérôme Beugnon
Rapporteurs / Rapporteuses : Tilman Esslinger, Hélène Perrin

Résumé

FR  |  
EN

Les gaz quantiques atomiques constituent un outil de choix pour étudier la physique à N corps grâce à leurs nombreux paramètres de contrôle. Ils offrent la possibilité d’explorer la physique en basse dimension, modifiée par rapport au cas à trois dimensions (3D) à cause du rôle accru des fluctuations. Dans ce travail, nous étudions le gaz de Bose à deux dimensions (2D) avec un confine-ment original dans le plan atomique, uniforme et de motif arbitraire. Ces gaz2D et uniformes, développés sur un montage existant, ont été installés sur un nouveau montage grâce à des potentiels optiques polyvalents.Nous présentons une série d’expériences exploitant cette géométrie flexible.D’abord, nous étudions le comportement statique et dynamique d’un gaz uni-forme lors de la transition d’un état 3D normal vers un état 2D superfluide.Nous observons l’établissement de la cohérence de phase dans un gaz à l’équilibre puis nous montrons l’apparition après une trempe de défauts topologiques dont le nombre est comparé à la prédiction de Kibble-Zurek. Ensuite, nous étudions grâce au nouveau montage les effets collectifs dans l’interaction lumière-matière, où les propriétés de résonance d’un nuage d’atomes dense sont fortement modifiées par rapport à celles d’un atome unique. Enfin, nous proposons deux protocoles pour le nouveau montage. Le premier permet d’évaporer de manière uniforme un gaz 2D grâce au réseau incliné du confinement à 2D. Le second propose de produire des supercourants de manière déterministe dans des pièges en anneaux, soit par condensation dans un champ de jauge, soit en réalisant une pompe à vortex topologique.