Étude de modèles en séparation de phase tenant compte d'effets d'anisotropie
Auteur / Autrice : | Ahmad Makki |
Direction : | Alain Miranville |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématique |
Date : | Soutenance le 14/10/2016 |
Etablissement(s) : | Poitiers |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mathématiques et applications (Poitiers ; 2000-...) |
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées | |
Jury : | Président / Présidente : François Jauberteau |
Examinateurs / Examinatrices : Alain Miranville, Madalina Petcu, Laurence Cherfils | |
Rapporteurs / Rapporteuses : Olivier Goubet, Stefania Gatti |
Résumé
Cette thèse se situe dans le cadre de l'analyse théorique et numérique de modèles en séparation de phase qui tiennent compte d'effets d'anisotropie. Ceci est pertinent, par exemple, pour l'évolution de cristaux dans leur matrice liquide pour lesquels ces effets d'anisotropie sont très forts. On étudie l'existence, l'unicité et la régularité de la solution des équations de Cahn-Hilliard et d'Allen-Cahn ainsi que son comportement asymptotique en terme d'existence d'un attracteur global de dimension fractale finie. La première partie de la thèse concerne certains modèles de séparation de phase qui, en particulier, décrivent la formation de motifs dendritiques. D'abord, on étudie les équations de Cahn-Hilliard et d'Allen-Cahn qui prennent en compte les effets d'anisotropie forts en dimension un avec des conditions de type Neumann sur le bord et une non linéarité régulière de type polynomial. En particulier, ces modèles contiennent un terme supplémentaire appelé régularisation de Willmore. Ensuite, on étudie ces modèles avec des conditions de type périodique (respectivement, Dirichlet) sur le bord pour l'équation de Cahn-Hilliard (respectivement, d'Allen-Cahn) mais en dimension spatiales plus élevées. Finalement, on étudie la dynamique des équations de Cahn-Hilliard et d'Allen-Cahn visqueux avec des conditions de type Neumann et Dirichlet respectivement sur le bord et une non linéarité régulière et en plus, la présence de simulations numériques qui montrent les effets du terme de viscosité sur l'anisotropie et l'isotropie dans l'équation de Cahn-Hilliard. Dans le dernier chapitre, on étudie le comportement en temps long en termes d'attracteurs de dimension finie, d'une classe d'équations doublement non linéaires de type Allen-Cahn avec des conditions de type Dirichlet sur le bord et une non linéarité singulière.