Thèse soutenue

Traitement des eaux usées par dénitrification autotrophe impliquant le cycle du soufre en réacteurs à lit fluidisé : influence du pH, de la température et de la concentration en nickel

FR  |  
EN
Auteur / Autrice : Francesco Di Capua
Direction : Eric Van Hullebusch
Type : Thèse de doctorat
Discipline(s) : Sciences et Techniques de l'Environnement
Date : Soutenance le 16/12/2016
Etablissement(s) : Paris Est en cotutelle avec Università degli studi (Cassino, Italie)
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Géomatériaux et Environnement (Champs-sur-Marne, Seine-et-Marne)
Jury : Président / Présidente : Erkan Sahinkaya
Examinateurs / Examinatrices : Eric Van Hullebusch, Giovanni Esposito, Piet N. L. Lens
Rapporteurs / Rapporteuses : Giulio Munz

Résumé

FR  |  
EN

La dénitrification autotrophe à l’aide de composés réduit de soufre est une approche intéressante pour le traitement biologique des contaminations azotées et des effluents pauvre en matière organique. La dénitrification autotrophe utilise des composés inorganiques comme sources d'énergie et de carbone. L'absence de matière organique élimine le besoin de post-traitements pour éliminer l'excès de carbone organique et limite la formation sous-produits d’oxydation dans le cadre de la production d’eau potable. Les eaux usées provenant des industries métallurgiques et minières ont généralement un faible pH, des températures basses et des concentrations élevées en métaux lourds. L'élimination biologique de l'azote est un défi parce que les bactéries dénitrifiantes prospèrent habituellement à pH neutre et à températures ambiantes (20-30 °C).Le but de cette thèse était de développer un procédé robuste de dénitrification à base de soufre dans des bioréacteurs à pH acide, températures psychrophiles (< 20 °C) et concentrations élevées en nickel. Le procédé a été optimisé au préalable avec des essais biologiques étudiant l'influence de la source de soufre (S2O32-, S0 biogénique et le synthétisé chimiquement), de la taille des particules de S0 (poudre et lentilles), de la culture dénitrifiante (cultures pures et mixtes de Thiobacillus) et de la température (6-30 °C) sur la cinétique de la dénitrification. L'utilisation de S2O32- et d’une culture pure de T. denitrificans ont permis d’atteindre des rendements de dénitrification les plus élevés. Le soufre élémentaire biogénique a été testé pour la première fois comme donneur d'électrons pour la dénitrification, montrant des taux de dénitrification 1.7 fois plus élevés que ceux obtenue avec de la poudre de S0 synthétisé chimiquement. Les taux de la dénitrification avec le S2O32- augmentent exponentiellement avec la température et les calculs avec l'équation d'Arrhenius donnent une énergie d'activation apparente Ea de 76.6 kJ/mol.Deux réacteurs à lit fluidisé (FBR) ont été utilisés pour étudier la dénitrification avec S2O32- à différents pH (5.25-7.00) et températures décroissantes (3-20 °C). Des rendements de dénitrification > 99% ont été observés pour eaux usés présentant des pH compris entre 5.75 et 5.30. L'addition d'une unité de carbonatation fournissant au biofilm du CO2 comme source de carbone supplémentaire, permettant une dénitrification complète à un pH de 4.75. Dans le même FBR, des taux de charge d'azote élevés (jusqu'à 3,3 kg N-NO3-/m3 d) avec le thiosulfate ont été maintenu à des températures aussi basses que 3 °C. L'impact de deux composés du Nickel (NiEDTA2- et NiCl2) sur la dénitrification à base de soufre a été étudiée dans deux FBR en parallèle à 20 (± 2) °C et des concentrations de nickel variant dans la gamme de 5-200 mg Ni/L. Dans des bioessais discontinues, 25-100 mg Ni/L de NiCl2 ont inhibée l'élimination de NO3- de 7-16%, alors qu'aucune inhibition n'a été observée avec NiEDTA2-. L'EDTA non complexée a inhibée la dénitrification à des concentrations supérieures à 100 mg/L. Les deux composés de Ni ont montré aucun effet négatif sur la dénitrification en FBR aux concentrations testées. Le bilan massique du nickel, la caractérisation de la phase solide et la modélisation thermodynamique ont révélé que des précipités de nickel ont été principalement éliminés avec l'effluent. Les phosphates, sulfures et oxydes de nickel ont été déterminés comme les principaux précipités de nickel et étaient principalement amorphe.Les FBRs se sont révélés être bioprocédés robustes pour l'élimination de l'azote à pH acide, pour des températures psychrophiles et des concentrations élevées de nickel. Les résultats de cette étude sont d'un grand intérêt pour le traitement des eaux souterraines et minières contaminés par les nitrates dans les régions froides du monde et également pour les eaux usées industrielles acides et chargées en métaux lourds