Analyse semiclassique de l'équation de Schrödinger à potentiels singuliers
Auteur / Autrice : | Victor Chabu |
Direction : | Clotilde Fermanian-Kammerer |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 07/11/2016 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Analyse et de Mathématiques Appliquées (Créteil ; 1992-....) - Laboratoire d'Informatique Gaspard-Monge / LIGM - Laboratoire d'Analyse et de Mathématiques Appliquées |
Jury : | Président / Présidente : Nalini Anantharaman |
Examinateurs / Examinatrices : Thomas Duyckaerts, Galina Perelman | |
Rapporteurs / Rapporteuses : Frédéric Hérau, Alain Joye |
Mots clés
Résumé
Dans la première partie de cette thèse nous étudions la propagation des mesures de Wigner associées aux solutions de l'équation de Schrödinger à potentiels présentant des singularités coniques, et nous montrons qu'elles sont transportées par deux différents flots Hamiltoniens, l'un sur le fibré cotangent à la variété des singularités et l'autre ailleurs dans l'espace des phases, à moins d'un phénomène d'échange entre ces deux régimes qui peut se produire quand des trajectoires du flot extérieur atteignent le fibré cotangent. Nous décrivons en détail et le flot et la concentration de masse autour et sur la variété singulière, et illustrons avec des exemples quelques questions issues de la faute d'unicité des trajectoires classiques sur les singularités en dépit de l'unicité des solutions quantiques, ce qui refute tout principe de sélection classique, mais qui n'empêche dans certains cas de résoudre complètement le problème.Dans la deuxième partie nous présentons un travail mené en collaboration avec Dr. Clotilde Fermanian et Dr. Fabricio Macià où nous analysons une équation de type Schrödinger pertinente à l'étude semiclassique de la dynamique d'un électron dans un cristal avec impuretés et montrons que, dans la limite où la période caractérisique du réseau cristallin est sufisamment petite par rapport à la variation du potentiel extérieur représentant les impuretés, cette équation peut être approximée par une équation de masse effective, ou, plus généralement, que sa solution se décompose en modes de Bloch et que chacun d'eux satisfait une équation de masse effective spécifique à son énergie de Bloch