Thèse soutenue

Une étude du bien-composé en dimension n.

FR  |  
EN
Auteur / Autrice : Nicolas Boutry
Direction : Laurent Najman
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 14/12/2016
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - Laboratoire d'Informatique Gaspard-Monge / LIGM
Jury : Président / Présidente : Michel Couprie
Examinateurs / Examinatrices : Laurent Najman, Thierry Géraud, Longin Jan Latecki, Loïc Mazo
Rapporteurs / Rapporteuses : Rocio Gonzalez-Diaz, Nicolas Passat, Jacques-Olivier Lachaud

Résumé

FR  |  
EN

Le processus de discrétisation faisant inévitablement appel à des capteurs, et ceux-ci étant limités de par leur nature, de nombreux effets secondaires apparaissent alors lors de ce processus; en particulier, nous perdons la propriété d'être "bien-composé" dans le sens où deux objects discrétisés peuvent être connectés ou non en fonction de la connexité utilisée dans l'image discrète, ce qui peut amener à des ambigüités. De plus, les images discrétisées sont des tableaux de valeurs numériques, et donc ne possèdent pas de topologie par nature, contrairement à notre modélisation usuelle du monde en mathématiques et en physique. Perdre toutes ces propriétés rend difficile l'élaboration d'algorithmes topologiquement corrects en traitement d'images: par exemple, le calcul de l'arbre des formes nécessite que la representation d'une image donnée soit continue et bien-composée; dans le cas contraire, nous risquons d'obtenir des anomalies dans le résultat final. Quelques representations continues et bien-composées existent déjà, mais elles ne sont pas simultanément n-dimensionnelles et auto-duales. La n-dimensionalité est cruciale sachant que les signaux usuels sont de plus en plus tridimensionnels (comme les vidéos 2D) ou 4-dimensionnels (comme les CT-scans). L'auto-dualité est nécéssaire lorsqu'une même image contient des objets a contrastes divers. Nous avons donc développé une nouvelle façon de rendre les images bien-composées par interpolation de façon auto-duale et en n-D; suivie d'une immersion par l'opérateur span, cette interpolation devient une représentation auto-duale continue et bien-composée du signal initial n-D. Cette représentation bénéficie de plusieurs fortes propriétés topologiques: elle vérifie le théorème de la valeur intermédiaire, les contours de chaque coupe de la représentation sont déterminés par une union disjointe de surfaces discrète, et ainsi de suite