Thèse soutenue

Etude de la compacité optimale des mélanges granulaires binaires : classe granulaire dominante, effet de paroi, effet de desserrement

FR  |  
EN
Auteur / Autrice : Gérard Roquier
Direction : Jean-Noël Roux
Type : Thèse de doctorat
Discipline(s) : Structures et Matériaux
Date : Soutenance le 15/02/2016
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Navier (Paris-Est) - Laboratoire Navier / NAVIER UMR 8205
Jury : Président / Présidente : Gaël Combe
Examinateurs / Examinatrices : Jean-Noël Roux, Nicolas Roussel
Rapporteurs / Rapporteuses : François de Larrard, André Lecomte

Résumé

FR  |  
EN

La compacité des matériaux granulaires est une grandeur qui intéresse un grand nombre de secteurs, notamment les bétons hydrauliques. Lorsque les fractions granulaires ne possèdent pas des rapports de tailles infinis, deux interactions géométriques se développent : l’effet de paroi et l’effet de desserrement. La première peut se décrire ainsi : une grosse particule isolée constitue un « intrus » contre lequel viennent se ranger les petites particules, créant un supplément de vides à l’interface. La seconde se produit lorsque les petits grains sont insuffisamment fins pour se glisser entre les gros. Nous analysons comment elles sont prises en compte dans un certain nombre de modèles d’empilement en nous fixant finalement sur celui de de Larrard et al. : le modèle d’empilement compressible (MEC), l’un des plus efficaces. Dans celui-ci, les effets de paroi et de desserrement sont quantifiés par l’intermédiaire de deux coefficients dont les expressions sont obtenues par lissage de données expérimentales en fonction du rapport des diamètres fins/gros. Cependant, il n’existe aucune théorie pleinement satisfaisante permettant de les obtenir. Cette thèse vise à combler ce chaînon manquant. Nous avons conduit notre étude dans le cadre des empilements ordonnés et compacts de particules afin d’être en adéquation avec les hypothèses de constitution du MEC qui propose, comme préalable à l’obtention de la compacité réelle, la détermination d’une compacité virtuelle définie comme la compacité maximale susceptible d’être atteinte si l’on pouvait déposer, un à un, chaque grain à son emplacement idéal. Cette façon de procéder permet la création de cellules élémentaires juxtaposées. Dans ce cadre, l’interaction exercée par une espèce granulaire sur une autre de taille différente est menée à partir d’une étude localisée autour d’une particule « intruse » de la classe dominée, entourée de particules de la classe dominante. La simulation numérique apporte une confirmation de la validité du modèle. En plus de fournir des coefficients d’effets de paroi et de desserrement très proches de ceux prédits théoriquement, elle a permis l’étude d’empilements désordonnés de compacité maximale pour des billes bidispersées sans frottement dont les rapports de tailles valent 0,2 et 0,4. Le concept de « pressions partielles », qui tient compte à la fois des aspects géométrique et mécanique, a permis d’affiner la notion de classe dominante et de mieux appréhender la constitution du squelette porteur de l’édifice granulaire. En plus des zones constituées par les « fins dominants » et par les « gros dominants », il existe une zone mixte que nous avons dénommée « zone de synergie du squelette porteur » où les « pressions partielles » fines-grosses sont les plus importantes. En tenant compte de la nouvelle théorie développée pour les interactions géométriques, le modèle d’empilement compressible (MEC) subit une évolution et devient le MEC 4-paramètres, qui sont : les coefficients d’effet de paroi et d’effet de desserrement, le rapport de tailles de caverne critique et l’indice de compaction du mélange. Ce dernier ayant subi un nouvel étalonnage, le MEC 4-paramètres montre son efficacité quant à la prédiction de compacités sur mélanges binaires à partir de l’analyse de 780 résultats obtenus sur différents types de matériaux. Enfin, un modèle visant à prédire la viscosité d’une suspension concentrée de particules sphériques multidimensionnelles suspendues dans un fluide visqueux est présenté. Compatible avec la relation d’Einstein, il fait appel au concept de changement d’échelle de Farris et à une loi de viscosité de type Krieger-Dougherty. Lorsque la fraction volumique de solide atteint sa valeur critique, la suspension devient empilement et le mélange atteint la compacité du squelette solide déterminée par le MEC 4-paramètres