Méthodes accélérées de Monte-Carlo pour la simulation d'événements rares. Applications aux Réseaux de Petri
Auteur / Autrice : | Maïder Estecahandy |
Direction : | Laurent Bordes |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques Appliquées |
Date : | Soutenance le 18/04/2016 |
Etablissement(s) : | Pau |
Ecole(s) doctorale(s) : | École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-) |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les études de Sûreté de Fonctionnement (SdF) sur les barrières instrumentées de sécurité représentent un enjeu important dans de nombreux domaines industriels. Afin de pouvoir réaliser ce type d'études, TOTAL développe depuis les années 80 le logiciel GRIF. Pour prendre en compte la complexité croissante du contexte opératoire de ses équipements de sécurité, TOTAL est de plus en plus fréquemment amené à utiliser le moteur de calcul MOCA-RP du package Simulation. MOCA-RP permet d'analyser grâce à la simulation de Monte-Carlo (MC) les performances d'équipements complexes modélisés à l'aide de Réseaux de Petri (RP). Néanmoins, obtenir des estimateurs précis avec MC sur des équipements très fiables, tels que l'indisponibilité, revient à faire de la simulation d'événements rares, ce qui peut s'avérer être coûteux en temps de calcul. Les méthodes standard d'accélération de la simulation de Monte-Carlo, initialement développées pour répondre à cette problématique, ne semblent pas adaptées à notre contexte. La majorité d'entre elles ont été définies pour améliorer l'estimation de la défiabilité et/ou pour les processus de Markov. Par conséquent, le travail accompli dans cette thèse se rapporte au développement de méthodes d'accélération de MC adaptées à la problématique des études de sécurité se modélisant en RP et estimant notamment l'indisponibilité. D'une part, nous proposons l'Extension de la Méthode de Conditionnement Temporel visant à accélérer la défaillance individuelle des composants. D'autre part, la méthode de Dissociation ainsi que la méthode de ``Truncated Fixed Effort'' ont été introduites pour accroitre l'occurrence de leurs défaillances simultanées. Ensuite, nous combinons la première technique avec les deux autres, et nous les associons à la méthode de Quasi-Monte-Carlo randomisée. Au travers de diverses études de sensibilité et expériences numériques, nous évaluons leur performance, et observons une amélioration significative des résultats par rapport à MC. Par ailleurs, nous discutons d'un sujet peu familier à la SdF, à savoir le choix de la méthode à utiliser pour déterminer les intervalles de confiance dans le cas de la simulation d'événements rares. Enfin, nous illustrons la faisabilité et le potentiel de nos méthodes sur la base d'une application à un cas industriel.