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Résumé

Dans cette these, nous nous intéressons a différents opérateurs d’inf-convolutions
et a leurs applications a une classe d’inégalités de transport générales, plus spéci-
fiquement sur les graphes. Notre objet de recherche s’inscrit donc dans les théories
du transport de mesure et de ’analyse fonctionnelle.

En introduisant une notion de gradient adapté au cadre discret (et plus générale-
ment a tout espace métrique dont les boules sont compactes), nous prouvons que
certains opérateurs d’inf-convolution sont solutions d’une inéquation d’Hamilton
Jacobi sur les graphes. Ce résultat nous permet d’étendre au cadre discret un
théoreme classique de Bobkov, Gentil et Ledoux. Plus précisément nous montrons
que des inégalités de transport faible (adaptées au cadre discret) sont équivalentes,
sur un graphe, a 'hypercontractivité des opérateurs d’inf-convolutions. On en dé-
duit plusieurs résultats concernant différentes inégalités fonctionnelles, dont celle de
Sobolev logarithmique et de transport faible.

Nous étudions par ailleurs les propriétés générales de différents opérateurs d’inf-
convolutions, incluant le précédent, mais aussi un opérateur reli¢ a un modele issu
de la physique (et au phénomene de grande déviation), toujours sur les graphes
(dérivabilités, convexité, points extremum etc.).

Dans un deuxieme temps, nous nous intéressons aux liens entre différentes no-
tions de courbure de Ricci sur les graphes — proposées récemment par plusieurs
auteurs — et les inégalités fonctionnelles de type transport-entropie, ou transport-
information associées a une chaine de Markov. Nous obtenons également une borne
supérieure sur le diametre d’un graphe dont la courbure, en un certain sens, est
minorée, un résultat a la Bonnet-Myers.

Enfin, en nous restreignant au cas de la dimension 1, sur la droite réelle, nous
obtenons une caractérisation d’une inégalité de transport faible et de I'inégalité de
Sobolev logarithmique restreinte aux fonctions convexes. Ces résultats utilisent des
propriétés géométriques liés a l'ordre convexe.

Mots clés : inf-convolution, equation d’Hamilton-Jacobi, inégalité de transport
faible, courbure de Ricci, espace discret, ordre convexe



Abstract

In this thesis, we interest in different inf-convolution operators and their applica-
tions to a class of general transportation inequalities, more specifically in the graphs.
Therefore, our research topic fits in the theories of transportation and functional
analysis.

By introducing a gradient notion adapting to a discrete space (more generally to
all space in which all closed balls are compact), we prove that some inf-convolution
operators are solutions of a Hamilton-Jacobi’s inequation. This result allows us
to extend a classical theorem from Bobkov, Gentil and Ledoux. More precisely,
we prove that, in a graph, some weak transport inequalities are equivalent to the
hypercontractivity of inf-convolution operators. Thanks to this result, we deduce
some properties concerning different functional inequalities, including Log-Sobolev
inequalities and weak-transport inequalities.

Besides, we study some general properties (differentiability, convexity, extreme
points etc.) of different inf-convolution operators, including the one before, but also
an operator related to a physical model (and to a large deviation phenomenon). We
stay always in a graph.

Secondly, we interest in connections between different notions of discrete Ricci
curvature on the graphs which are proposed by several authors in the recent years,
and functional inequalities of type transport-entropy, or transport-information re-
lated to a Markov chain. We also obtain an extension of Bonnet-Myers’ result: an
upper bound on the diameter of a graph of which the curvature is floored in some
ways.

Finally, restricting in the real line, we obtains a characterisation of a weak trans-
port inequality and a log-Sobolev inequality restricted to convex functions. These
results are from the geometrical properties related to the convex ordering.

key words: inf-convolution, Hamilton-Jacobi equation, weak transport inequality,
Ricci curvature, discrete space, convex ordering
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Chapter 1

Introduction Générale

Dans cette these, je me suis intéressé aux opérateurs d’inf-convolution et a leurs
applications aux théories des inégalités fonctionnelles, du transport optimal et de
la courbure de Ricci sur un espace discret. Dans l'introduction, je me placerai tout
d’abord sur un espace continu pour présenter le probleme classique du transport op-
timal et son probléme dual, afin d’introduire les opérateurs d’inf-convolution (aussi
appelés formules de Hopf-Lax), dans un contexte bien connu. Ces opérateurs sont
des outils essentiels dans 1’étude des inégalités fonctionelles auxquelles je me suis
intéressé : inégalités de Poincaré, de Sobolev logarithmique, et inégalités dites de
transport. Je présenterai des résultats dans deux cadres différents : la version clas-
sique ou l'espace est continu, et une version ou l'espace est discret. Je décrirai brieve-
ment le role joué par les opérateurs d’inf-convolution dans I’étude de ces inégalités
et leurs relations, leurs conséquences et leurs applications. Ensuite, j'introduirai la
notion (classique en continu) de courbure de Ricci sur une variété riemannienne
avant d’en présenter plusieurs définitions récentes sur les graphes. J'expliquerai en
particulier comment une borne inférieure sur la courbure de Ricci entraine certaines
inégalités fonctionnelles avant de décrire les difficultés pour généraliser ces résultats
aux espaces discrets. Enfin je discuterai du probleme du transport et des inégalités
fonctionnelles en dimension un.

Le matériel constituant cette these est issu des travaux suivants :

— Hamilton-Jacobi equations on graphs and applications, article disponible a

I'adresse http ://arxiv.org/abs/1512.02416;

— Clurvature and transport inequalities for Markov chains in discrete spaces,
article écrit en collaboration avec Max Fathi et disponible a I'adresse
http ://arxiv.org/abs/1509.07160 ;

— Characterization of a class of weak transport-entropy inequalities on
the line, article écrit en collaboration avec Nathaél Gozlan, Cyril
Roberto, Paul-Marie Samson et Prasad Tetali et disponible a l'adresse
http ://arxiv.org/abs/1509.04202;

— Characterization of modified log-Sob inequality, preprint en fin d’écriture écrit
en collaboration avec Michal Strzelecki ;
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— Large deviations for the invariant distribution of Markov chains with expo-
nentially small jump rates, in progress, en collaboration avec Alessandra Fag-
gionato, David Gabrielli, Mauro Mariani.

1.1 Transport optimal

Dans cette section nous introduisons le notion de transport optimal, d’abord
dans le cadre classique d’un espace continu, puis dans le cadre des espaces discrets
avec la notion dite de transport faible.

1.1.1 Transport optimal classique

Apres avoir défini le probleme du transport optimal, nous introduirons quelques
notions qui lui sont reliées : opérateur d’inf-convolution et équation d’Hamilton-
Jacobi. Le lecteur peut par exemple consulter le livre de Cédric Villani [99] pour
une introduction plus détaillée et plus complete de ce theme de recherche ainsi que
pour une présentation exhaustive de la littérature. On commence par la définition
du transport optimal :

Définition 1.1.1. Sur un espace métrique (X, d), étant données deux mesures de
probablité pi, v et une fonction ¢ de X x X dans R, le probléme du transport optimal

consiste a minimiser
Tl v) i=inf [[ c(w, y)dr,
™ JJx

sur l’ensemble des couplages m de p et v.

On rappelle que 7 est un couplage de | et v si ™ est une mesure de probabilité
sur X x X vérifiant w(dz, X)) = p(dz) et 7(X,dy) = v(dy) (i.e. ™ a pour premiére
marginale p et pour seconde marginale v).

S’il existe un couplage, souvent noté 7*, qui réalise I'infimum dans la définition
du transport optimal, on parle de couplage optimal.

Le probleme du transport optimal a été introduit par Gaspard Monge au XVI-
[Teme siecle pour modéliser le déplacement d’une masse d’un endroit a un autre de
fagon optimale. La quantité c(x,y) représente alors le colit du déplacement d’une
unité de masse du point x au point y, et pour cette raison on appelle ¢ la fonction de
cotit. En termes probabilistes, le probléeme du transport optimal peut étre reformulé
comme suit

Tepv)= _inf E[e(X,Y)

XY~y
ou (X,Y) est un couple de variables aléatoires, X de loi u, Y de loi v (on note
X ~petY ~v)etou lE désigne I'espérance.
En particulier, dans une variété riemanienne (M, d), lorsque ¢(z,y) := d(x,y)?
avec p > 1, on retrouve la distance bien connue de Wasserstein :

W, = 7;1/37.
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Si P(M) désigne I'ensemble des mesures de probabilités sur M, il est facile de voir
que (P(M),W,) est un espace métrique pour tout p > 1. Suite aux travaux fonda-
teurs de Otto et Villani [87] et Cordero-Erausquin, McCann et Schmuckenschléger
[24], les propriétés des géodésiques de 'espace (P (M), W,) se sont avérées étroite-
ment reliées aux propriétés géométriques de I'espace M lui-méme, ce qui a finalement
abouti a une définition alternative de la courbure de Ricci et a son extension a des
espaces métriques plus généraux a travers la théorie de Sturm-Lott-Villani [69, 96],
voir aussi [2] pour de récents développements.

Dans ce document, les fonctions de coiit seront toujours de la forme c(z,y) =
6(d(x,y)), avec §: R — RT une fonction convexe. On notera Ty(u,v) au lieu de
To(p, v). En outre, si 0(x) = |z|?, avec p > 1, on notera encore plus simplement 7.

Maintenant on introduit le théoreme de la dualité donné par Kantorovich.
Ce théoreme relie le cotit de transport a un opérateur appelé opérateur d’inf-
convolution. On a ’égalité suivante :

To(u,v) = inf /Qfdp _ /fdz/. (1.1.2)
fect
Ou C? désigne I’ensemble des fonctions continues & support compact et
Q°f(x) := inf {f(y) + c(x,y)}
yeX

est Popérateur d’inf-convolution. Si ¢(z,y) := 3d(z,y)? la famille d’opérateurs

Quf () = b (f(y) + ()} (113

indexée par t > 0 est un semi-groupe (dans le sens ou Q;(Qs) = Qs15). On voit bien
que pour t = 1 on retrouve Q°f. L’équation s’appelle aussi la formule de
Hopf-Lax qui est connue pour étre la solution de viscosité de I’équation d’Hamilton
Jacobi suivante :

ot

v(z,0) = f(x) T €M,

ou | - |, désigne la norme sur 'espace tangent T, M correspondant a la métrique
g au point x (voir par exemple [33]). L’équation d’'Hamilton-Jacobi joue un role
tres important dans la domaine des équations aux dérivées partielles. Elle permet
d’appliquer les outils de calcul différentiel aux problemes de transport cf. [99], on
va en discuter a travers tout ce document. Elle est également reliée a la théorie des
systemes dynamiques, a la théorie d’Aubry-Mather etc.

1.1.2 Transport optimal faible

Motivés par certaines formes du transport introduites par Marton [76, [75], Go-
zlan, Roberto, Samson et Tetali [50] introduisent une définition générale de ce qu’ils
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appellent le transport faible que nous allons maintenant rappeler. Au lieu de con-
sidérer les fonctions de cofit de la forme

c: X xX =R,
ces auteurs introduisent les fonctions de coiit de la forme
c: X x P(X) = R*.

Ainsi, le transport faible, que nous allons encore noter 7y, est défini par :

To(wln) i=int { [ e(w,puldo) |

ou 7 est un couplage de pu et v et p, est le noyau conditionnel de 7 par rapport
a p, ie. m(dzdy) = p(dr)p,(dy). Le terme "faible" provient du fait que 7y(v|p) est
toujours plus petit que Tp(u, v).

Sous certaines hypotheéses portant sur l'espace et le colit ¢, ces auteurs
généralisent le théoreme de dualité de Kantorovich [50]. Selon le choix de ¢, on peut
définir différents types de transport faibles et méme retrouver le transport optimal
classique (choisir ¢(x,y) = [ 0(d(x,y)p(dy)). Dans ce document, on s’intéresse plus
spécifiquement aux deux cas suivants :

(7) en prenant c(x,p) = 6([d(x,y)p(dy)), on retrouve le transport de Marton
[76, [75]

Ta(vl) = int { [ 0 ( [ dlar,)pa(d)) ()}

qui, en terme probabiliste, s’écrit également

To(vlp) == _inf B[G(E[(X,Y)|X])]

XY ~v

ou E(-|X') désigne I'espérance conditionnelle sachant X. Si 6 est convexe, la formule

de dualité (1.1.2)) devient [50]
Tovlw) = int [ Qfdu~ [ fav
fect

avec

Qf(@):= it { [ r@wldy)+0 ([ da. vy )}.

pEP(X

(#7) Sur un espace vectoriel normé, en prenant c(z,p) = 0 (||z — [yp(dy)||), Go-
zlan et al. définissent [50] le transport faible suivant

Tolvl) == inf { [0 (llx = [ ypo(d)]) utan)}.
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(ou 7 décrit 'ensemble des couplages de u et v), qui s’écrit encore

To(v|p) == _ inf E[O(|X -EYX)])].

XY ~v
Si 0 est convexe, la formule de dualité ((1.1.2)) prend la forme [50]

Tolvl) = inf, [Qsdu~ [ yav

avec

Qrw)i= int { [ sty +6 (o = [opetanl)}-

1.2 Inégalités fonctionnelles

Cette section est dédiée a 'introduction de plusieurs inégalités fonctionnelles,
dont celles bien connues de Sobolev logarithmique et de transport. Comme pour la
section précédente, nous commencerons par présenter ces inégalités dans le cadre
classique d’un espace continu avant d’en donner certaines formes valables dans les
espaces discrets. Le lecteur intéressé pourra consulter par exemple [5] pour une
introduction plus complete.

1.2.1 Espace continu

Pour simplifier on se place dans le cadre de R™ muni de la norme euclidienne,
notée |- |, mais 'essentiel des notions présentées ici restent valables dans un contexte
bien plus général.

Définition 1.2.1. On dit qu’une mesure de probabilité p sur R™ vérifie l’inégalité
de Sobolev logarithmique, s’il existe une constante C, (on notera alors LS(C') ou LS
dans le cas ot on ne précise pas la dépendance par raport da la constante C') telle que
pour toute fonction f :R™ — R, assez réqulicre, l'inégalité suivante est satisfaite :

Ent, f2 : /fQ 0g<

f2
[ f3d

Dans l'expression précédente, Ent,(f?) est 'entropie de f?, calculée par rapport
a la mesure de probabilité p, et |V f]? = X, 9;f2. Cette inégalité est introduite
par Gross [52] en 1975. L’inégalité de Sobolev logarithmique peut étre reformulée
en utilisant la terminologie de la théorie de I'information. Si [ f2du =1, v := f?u

est une mesure de probabilité de densité f2 par rapport a p. L’inégalité de Sobolev
logarithmique s’écrit alors

)du\C/\Vfl dp.

H(v|p) < CZ(v|p),
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pour toute mesure v absolument continu par rapport & p, ot H(v|u) := Ent,(f?)
est Pentropie relative de v par rapport & pu et Z(v|u) := [ |V f]*du est 'information
de Fisher.

Par un changement de fonction f — e/, et en utilisant la formule de dérivation
des fonctions composées, on obtient une autre formulation encore. Plus précisément,
I'inégalité de Sobolev logarithmique LS(C') est équivalente a

(mLS): Ent,(e) < j/|Vf\2efdu.

Cette derniere inégalité va jouer un role particulier dans le cas ot I'espace n’est pas
continu. Elle est souvent appelée inégalité de Sobolev logarithmique modifiée (on
écrira mLS). Notons dés a présent que dans un cadre discret 'inégalité de Sobolev
logarithmique modifiée est (strictement) plus faible que 'inégalité de Sobolev loga-
rithmique.

Si on restreint mLS a la classe des fonctions convexes, alors on dit que pu satisfait
a une inégalité de Sobolev logarithmique modifiée convexe et on notera CmLS.

L’une des conséquences classiques de I'inégalité LS est la concentration Gaussi-
enne suivante :

Théoréme 1.2.2. Si u vérifie LS(C'), alors pour toute fonction régulicre f : X — R
vérifiant sup, |V f|(x) < 1 et tout t > 0, on a

Mf—/f>0<€%f

Pour prouver ce résultat on peut utiliser 'argument de Herbst qui consiste a
appliquer l'inégalité LS(C) a la fonction exp{Af/2} et a étudier le comportement
de la transformée de Laplace F(\) := [exp{Af}du, voir par exemple [64, Bl [7]. 11
existe des extensions & des cadres plus généraux, voir notamment [81], 51].

Parmi les propriétés fondamentales satisfaites par 'inégalité de Sobolev loga-
rithmique, notons en particulier la tensorisation : si p vérifie LS(C') sur R”, alors le
produit u®™ vérifie également LS(C') sur (R™)™ pour tout m € Z*. Par conséquent,
u®m vérifie la concentration Gaussienne ci-dessus pour tout m. On dit alors que pu
vérifie une propriété de concentration Gaussienne adimensionelle.

La deuxieme inégalité fonctionnelle qui va nous intéresser est I'inégalité de trans-
port qui compare le transport optimal a ’entropie relative.

Définition 1.2.3. Etant donnée une fonction de coit ¢ : R" x R" — R*, on dit
qu’une mesure de probabilité p vérifie 'inégalité transport-entropie T.(C) s’il existe
une constante C', telle que pour toute mesure de probabilité v, l'inégalité suivante
est satisfaite :

Te(p,v) < CH(v|p).
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Cette inégalité a été introduite par Talagrand pour la mesure gaussienne, avec
c(z,y) = |z —y|?, ol il prouve que C = 2 est la constante optimale [98]. Pour cette
raison l'inégalité de transport-entropie introduite ci-dessus est parfois aussi appelée
inégalité de Talagrand. On la notera T5(C') (ou plus simplement 73). Nous renvoyons
a [99] pour une présentation complete de cette inégalité. Donnons néanmoins une
caractérisation tres utile, due & Bobkov et Gotze [I3] (pour l'obtenir, il suffit de
comparer la formule duale de 7. (i.e. le théoreme de Kantorovich) et la formule
duale de l'entropie Ent,(f) = SUD [ ey [ fodu).

Théoréme 1.2.4 (Caractérisation de Bobkov et Gotze). Les assertions suivantes
sont équivalentes :

(1) p vérifie T.(C).

(13) Pour toute fonction f:R™ — R continue bornée, on a

/exp{ng}dugexp{é/fdu}.

On peut montrer que l'inégalité de Talagrand (pour ¢(z,y) = |z — y|?) entraine
le méme phénomene de concentration gaussien que l'inégalité de log-Sobolev. En
outre, une telle inégalité tensorise entrainant ainsi une concentration Gaussienne
adimensionelle.

Ces deux inégalités (log-Sobolev et de Talagrand) donnant le méme phénomeéne
de concentration, une question naturelle est de savoir si ces inégalités sont compa-
rables. Une réponse est apportée par Otto et Villani dans [87] :

Théoreme 1.2.5. Si pu vérifie l'inégalité de Sobolev logarithimique, alors p vérifie
l'inégalité de Talagrand avec la méme constante.

Il y a plusieurs preuves de ce résultat (c.f.[87) [11], 42, 40} 45], 46, [47]). La preuve de
[42] est la plus générale, valable dans n’importe quel espace métrique. Elle consiste
a montrer que Ty est en fait équivalente a la concentration Gaussienne adimension-
nelle. Par conséquent, toutes les inégalités impliquant la concentration gaussienne
adimensionelle devraient entrainer Ty. La preuve de Bobkov, Gentil et Ledoux [11]
va particulierement nous intéresser car elle fait pour la premiere fois le lien en-
tre 'inégalité de transport-entropie et 'opérateur d’inf-convolution, via ’équation
d’Hamilton-Jacobi.

Théoréme 1.2.6 (Hypercontractivité [I1]). Supposons que p est une mesure de
probabilité absolument continue par rapport a la mesure de Lebesque sur R™. Alors
St

(i) il eziste une constante p > 0 telle que p vérifie LS(2/p),

alors

(17) pour tout a > 0 et tout t > 0,

€9 Naspr < Nle7 -
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Inversement, si (ii) est valable pour un certain a > 0 et pour tout t > 0, alors u
vérifie (i).

La derniere famille d’inégalités qui va nous intéresser a été introduite en 2009,
dans [54], par Guillin, Léonard, Wu et Yao. Ces inégalités, que nous introduisons

dans la définition qui suit, comparent le transport optimal a I'information de Fisher,
et s’appellent pour cela les inégalités de transport-information.

Définition 1.2.7. On dit qu’une mesure de probabilité y vérifie [’inégalité transport-
information T JI(C), si pour toute mesure de probabilité v, absolument continue par
rapport a L,

Te(p,v) < CL(v|p).

Si la fonction de cotit est quadratique, on notera Tl pour I'inégalité de transport-
information. Guillin et al. [53] ont montré que Tyl est entrainée par 'inégalité de
log-Sobolev et entraine celle de Talagrand.

Signalons enfin que Gozlan et al. montrent que les inégalités CmLS sont équiv-
alentes a une inégalité de transport faible dans [50].

1.2.2 Inégalités de transport-entropie faibles

Plagons-nous dans le cadre d'un espace polonais X dont les boules sont com-
pactes. Il est facile de voir que I'inégalité de Talagrand Ty n’est pas valable pour
des mesures a support non connexe. Ainsi une telle inégalité n’est valable, dans un
graphe, que si p est une mesure Dirac. Gozlan, Roberto, Samson et Tetali [50] ont
proposé de s’intéresser aux inégalités de transport-entropie faibles, ou I'entropie est
comparée au transport faible plutét qu’au transport classique. Plus précisément, et
plus spécifiquement, on s’intéressera aux inégalités suivantes.

Définition 1.2.8. Soit u une mesure de probabilité sur X (avec X = R"™ pour les
trois dernieres inégalités). On dit que p vérifie l'inégalité
~ T4 (C) si pour toute probabilité v,

To(v|p) < CH(v|p);
— Te_ (C) si pour toute probabilité v,
To(ulv) < CH(v|p);

~ Ty(C) si p vérifie T; (C) et TS (C).
- T;L(C) si pour toute probabilité v,

To(vlp) < CH(v|p);
— T, (C) si pour toute probabilité v,
To(ulv) < CH(v|p);
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— Ty(C) si p vérifie T, (C) et T, (C).

Ces inégalités de transport faibles peuvent étre définies dans un cadre tres
général.

Dans R”, en utilisant le transport faible 74, Gozlan, Roberto, Samson et Tetali
retrouvent 1’hypercontractivité pour les inégalités de Sobolev logarithimiques mod-
ifiées restreintes a la classe des fonctions convexes. Ceci est liée a la théorie des
ordres convexes que nous présentons a présent.

Ordre convexe et Théoréme de Strassen

Gozlan et al. montrent que le transport faible 7 est lié aux anciens résulats de
Strassen [95] concernant 'existence de martingales ayant des marginales données.

Définition 1.2.9 (ordre convexe). Soient p,v deuz mesures de probabilité sur R™,
on dit que p est majorée par v pour ['ordre convexe, et noté y <X v si

[ rdu< [ fav

Théoréme 1.2.10 (Strassen). Soient u,v € P(R™), p = v si et seulement s’il
existe une martingale (X,Y") telle que X suit la loi p et Y suit la loi v.

pour tout f : R™ — R convezxe.

Par définition de 7, pour un cofit convexe positif 8, il est facile de voir que u < v
est équivalente & Ty(ulv) = 0.

Lorsqu’on regarde I'inégalité de transport faible T, T (v|u) = 0 est équivalente
a lexistence de X ~ p et Y ~ v telle que (X,Y") est un couple de martingale.

1.2.3 Caractérisation des inégalités fonctionnelles sur R

Lorsqu’on se restreint a la dimension un (sur R), il est parfois possible de carac-
tériser completement certaines inégalités fonctionnelles. Dans les travaux de Muck-
enhoupt [82], concernant l'inégalité de Hardy, est établie une caractérisation de
I'inégalité de Poincaré. On en présente ici une version simplifiée.

Théoréme 1.2.11 (Muckenhoupt72). Soient deuz mesures de Borel ju et v sur Rt
et A la meilleure constante telle que pour toute fonction f mesurable positive,

[ ([ ) an) < 4 [~ pein), (12.12)

alors A est finie si et seulement si la constante
B = supu(fwc0]) ([~
=su x, 00
Yoo L 0

est finie. Et dans ce cas, on a A < B < 4B. Ici V' désigne la densité de la partie
absolument continue de v par rapport a la mesure de Lebesgue.
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L’inégalité est une forme particuliere de I'inégalité de Hardy. La con-
stante B, ou toute autre constante semblable, est souvent appelée constante de
Hardy, et I'encadrement du type A < B < 4B un encadrement de type Hardy.
L’inégalité de Hardy se trouve dans les travaux de Hardy dans les années 1920.
Miclo [79] généralise cette caractérisation au cadre discret, sur N, en 1999.

Bobkov et Gotze [I3] sont les premiers a utiliser les inégalités de Hardy pour car-
actériser sur R les mesures satisfaisant I'inégalité de Sobolev logarithmique. Pour
simplifier, on présente ce résultat en supposant que p est une mesure de proba-
bilité de médiane 0, absolument continue par rapport a la mesure de Lebesgue et

symétrique par rapport a 0. Alors p vérifie LS(C') si et seulement si la constante de
Hardy :

D= sup ol ton L [t

>0 p(lw, 00 (t)

est finie et on a %OD < C < 2880D. Miclo [79] améliore ce résultat dans le cadre
des espaces discrets et obtient 3%D < C < 20D. Voir aussi [36] pour une preuve
simplifiée dans le cas de la droite réelle. Enfin, signalons que Roberto [89] généralise
ces résultats a certaines inégalités a poids.

Gréce a la caractérisation de Bobkov et Gotze (théoreme , Gozlan propose
une caractérisation de 'inégalité de Talagrand. Pour simplifier, on ne précise pas

les constantes des inégalités.

Théoréme 1.2.13. Soit . est une mesure de probabilité sur R ; on note T la mesure
exponentielle de densité § exp(—|z|). Alors p satisfait Uinégalité de Talagrand T si
et seulement si
— w vérifie l'inégalité de Poincaré.
— Uapplication de transport U envoyant T sur pu (i.e UST = ) vérifie la propriété
de contraction suivante :

Jda,b > 0,Vz,h e R, |[U(z+h) —U(x)| < \/a+ bl|h|.

Dans notre these, nous donnerons des caractérisations d’autres inégalités sur
R, notamment certaines inégalités de transport faibles avec différentes fonctions de
colt, les inégalités de Sobolev logarithmiques modifiées restreintes aux fonctions
convexes etc.

1.2.4 Cadre d’un graphe

Lorsque 'espace est discret, afin de définir I'inégalité de Sobolev logarithmique
et les inégalités de transport-information, il faut trouver un remplacant de I'informa-
tion de Fisher. Sur les graphes, I'inégalité de Sobolev logarithmique est bien étudiée
dans la littérature (voir [41], [I7]). On rappelle quelques définitions.
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Définition 1.2.14 (Le cadre d'un graphe). Considérons un ensemble X fini ou
infini dénombrable, K est un noyau de Markov sur X si pour tout x,y € X,

K(xz,y) >0 et
Y K(z,y) =1

yeX

On définit le graphe avec l'ensemble des sommets X, et l’ensemble des arétes
{(z,y)|K(x,y) > 0,x # y}. Ainsi, Uespace qu’on considére est X, muni de la
distance de graphe

d(z,y) = inf{n € N; 3xg, .., z,|x0 = 2, ©,, =y, K(x;,241) >0 VO < i <n—1}.
On suppose qu’il existe une mesure réversible m associée au noyau K, i.e. on a
K(z,y)r(z) = K(y, x)n(y) Vr,y€X.
On note L le générateur Markovien,

Lf(z) =3 (f(y) = f(x)K(x,y).

Yy

On note P, = et le semigroupe associé a L, et on définit l'opérateur T', le carré du
champ, donné par

T(f,9)(@) == (fy) — f(@)(9(y) — 9(z)) K (2,y)

N —

et on note U'(f) :=T(f, f).

L’opérateur L est une analogie du Laplacien A, et par suite le semigroupe P; est
une analogie du semigroupe de la chaleur. On peut se référer a [7] pour les propriétés
de carré du champ I'; de L et pour différentes applications.

Puisque la reégle de dérivation des fonctions composées n’est plus valable en
discret, il y a plusieurs fagons de définir I'information de Fisher. Par exemple on

peut poser
(i) = Tu(f) =4 [ T (VE.\T ) du

20 =2 = [ L

ou f est la densité de v par rapport a u. Dans ce cadre, les relations entre les
inégalités fonctionnelles ne sont pas claires, on les développera dans la suite.

ou
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1.3 Courbure de Ricci en discret

Nous présentons rapidement dans cette section la notion de courbure de Ricci,
sur un espace continu puis sur un espace discret ou plusieurs définitions sont possi-
bles.

La courbure de Ricci joue un role tres important en géométrie Riemannienne.
Le lecteur peut se référer a [2, 4, 23] [99] pour une introduction compléte. Dans une
variété Riemannienne, il y a beaucoup de définitions de la courbure de Ricci bornée
inférieurement par un réel positif. On peut se référer a [97] pour un synthese de
toutes ces définitions et la preuve de leur équivalence. A cause de la perte de la régle
de dérivation des fonctions composées, ces définitions ne sont plus équivalentes sur
un graphe. Dans ce document, je me concentrerai sur trois définitions : la condition
de courbure de Bakry et Emery CD(x, 00), la courbure exponentielle CDE’(k, c0)
et la courbure d’Ollivier k.. Dans la suite j'introduirai ces trois notions sur un graphe
et sur une variété riemannienne en méme temps : lorsque X est un graphe, L et I" se
définissent comme dans la définition[1.2.14] lorsque X est une variété Riemannienne,
L sera le laplacien A. Je commence par la condition de Bakry et Emery [6].

Définition 1.3.1. On définit l'opérateur I'y comme

Lo(f) = SLI() = T(/, Lf).

On dit que la condition de courbure CD(k,00) est vérifiée si et seulement si pour
toute f, on a

La(f) = &I(f).

Dans une variété Riemannenne, CD(k, c0) implique 'ingalité de Sobolev loga-
rithmique, et donc I'inégalité de transport-information et 1'inégalité de Talagrand,
elle implique aussi inégalité de log-Harnack et l'inégalité de Buser, etc. Dans le
cadre d'une variété Riemannienne, I'y associe aussi le tenseur de Ricci, et la condi-
tion CD(k,00) est équivalente a dire que la borne inférieure de courbure de Ricci
est k. Dans le cadre d'un graphe, cette condition de courbure a été introduite et
étudiée en premier par Schmuckenshlager dans [92], puis étendue par S-T. Yau et
ses collaborateurs dans [59]. La condition CD(k, 00) sert aussi a prouver une version
discrete de I'inégalité de Buser [63].

Une autre adaptation en discret est proposée par Bauer et al. dans [9]. Ils con-
siderent un opérateur I'y modifié au lieu du I'y; habituel :

Définition 1.3.2. On définit l'opérateur I, par

EU):Fﬂﬁ—F<ﬁan-

On dit que la condition de courbure exponentielle CDE'(k.,00) est vérifiée si et
seulement si pour toute fonction f positive, on a

y(f) = kel(f).
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Dans le cadre d'un graphe, le terme I, permet de retrouver certaines regles de
dérivation. Comme application Bauer et al. prouvent une version discrete de 1'iné-
galité de log-Hanack. Dans une variété Riemannienne, ces deux notions de courbures
sont équivalentes.

Une autre formulation équivalente de CD(k, 00) est la décroissance exponentielle
de distance de Wasserstein

Wi(Py p, Plv) < exp(—rt)Wi(p,v),

ou P} est I'opérateur adjoint de F,. Cette notion est introduite par Ollivier sur les
graphes dans [85].

1.4 Présentation des chapitres

Dans cette section nous présentons tres brievement les résultats de notre these,
regroupés en chapitre.

Résumé du Chapitre 11

Dans ce chapitre, on note X', S deux espaces et F(X'), F(S) les ensembles des
fonctions de X', S a valeur dans R. On va s’intéresser aux opérateurs de la forme
Rf(x) = inf{a(f)(s) + b(z,5)},
ontzeX, a: F(X)— F(S)et R: F(X) = F(X).
Dans ce chapitre, on rappellera d’abord certains résultats classiques de la formule
de Hopf-Lax suivante, avec av: X — R (on suppose (X, d) métrique)

Quf(x) = inf {f(y) +ta (d(%; y)> } .

qui est une simple généralisation de . Dans une variété Riemannienne, Q) f
vérifie la propriété de semi-groupe et les équations d’Hamilton-Jacobi. De plus, elle
est reliée & la théorie du transport optimal par la formule de dualité (1.1.2).

Ensuite on se placera dans un espace X polonais dont les boules sont compactes.
On donnera des résultats concernant Popérateur Q, défini par

Jd(z, y)p(dy)> } .

O.f (z) = nf {/f p(dy) +t6< t

Les propriétés de Q.f permettent de comprendre le transport faible 7 introduit
dans section [I.1.2] Dans la section 2 du chapitre II, on étudiera les propriétés de
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régularité de Q,f, lexistence de minimum, la convexité de cette fonction. Dans la
section 3, on établira une équation d’Hamilton-Jacobi pour @, f de la forme

2 Q@)+ (WQuf1) <0,
avec
[f (=) — fy)]-

d(z,y)
On prouvera l'existence de la dérivation par rapport a ¢t a gauche et a droite, et
on en donnera une formule explicite. Tous ces résultats sont issus de [93] et seront
utilisés dans 1'étude des inégalités de transport 7 du chapitre IIT et V.

A la fin du chapitre, on regardera le cas d’équilibre. En prenant un graphe fini
orienté G(V, E), on se concentrera sur I'équation w(z) = inf,., »ep{w(y) +k(y, )}
Cette équation est motivée par un modele issu de la théorie des grandes déviations.
Lorsque G est un graphe fini, les solutions forment un polycone convexe de RIVI.
On caractérisera en particulier les solutions extrémes (les points extrémaux de ce
polycone convexe). Ce travail est issu de [34].

Vf| = sup (1.4.1)

Résumé du Chapitre III

Dans ce chapitre, ’espace est encore polonais avec les boules compactes. Le
but est d’étudier certaines inégalités fonctionnelles sur les espaces discrets. On se
concentrera sur les inégalités de transport faible (c.f. Definition impliquant 7.
En prenant Y (voir (1.4.1])) comme un gradient modifié, on introduira les inégalités
de Sobolev modifiée et de Poincaré modifiées suivantes :

Ent,(e/) < c/\’v“fﬁefdu,

Var(f) < C [ 1V f*dn.

En premier lieu, on reliera ces inégalités aux inégalités usuelles connues sur les
graphes. Ensuite, en utilisant certains outils du chapitre II et en suivant les idées
de [I1], on étudiera une version discréete des inégalités de Sobolev-logarithmique et
leurs propriétés d’hypercontractivité. En particulier on obtient le théoreme suivant :

Théoréme 1.4.2. Soient 1 une mesure de probabilité sur X et C' > 0.

(i) Si pour toute fonction f: X — R mesurable bornée,
Ent,(ef) < C/ﬁﬂ?ef du, (1.4.3)
Alors pour tout p > 0, tout t > 0 et toute f mesurable bornée,
9]z < lle |l (1.4.4)

Inversement, si on a pour certain p > 0 et pour tout t > 0, alors on a
([T43).
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(17) Si pour toute fonction f: X — R mesurable bornée,
Ent,(e/) < C / IV (—f)2e! dp, (1.4.5)

alors on a (1.4.4) pour tout p < 0, tout t € [0,—pC/2] et toute fonction f
mesurable bornée. Inversement, si on a pour certain p < 0 et pour tout

t €10,—pC/2), alors on a (1.4.5).

Ce théoreme permet d’étabilir une version discrete de la chaine d’implication :

LS = Ty = Poincaré.

Cette partie est issue de [93].

Résumé du Chapitre IV

Dans ce chapitre, on se placera dans le cadre d’un graphe associé a une chaine
de Markov qui est définie dans la section [I.2.4] Le but sera d’obtenir des inégalités
fonctionnelles dans un graphe sous les conditions de courbure de Ricci. On s’in-
téressera aux trois différentes courbures discrétes : la courbure de Bakry et Emery
CD(k, 00), la courbure exponentielle CDE’(k,, o) et la courbure d’Ollivier k.. Avec
Max Fathi, sous I'hypothése de CD(k,o0), en prenant les méme notation de la
section [I.2.4] nous obtenons une inégalité de transport information

Wa(fr, 7)< 2Z.(7)

et une estimation de diametre du graphe (théoréeme du type Bonnet-Myers) :
d(z,y)r < 2(J(z) + J(y)) .-

Sous I'hypothese de CDE’(k., 00), nous obtenons

W(faln)? < 29T.(F) < L),

27'('
e /{6

Finalement sous I’hypothese de la courbure d’Ollivier avec constante k., nous

obtenons ]

Wi < 5T (- () < -

<2
KC

().

Cette partie est issue de [35], une collaboration avec Max Fathi.
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Résumé du Chapitre V

Dans ce chapitre, nous nous sommes concentrés sur la droite réelle R et le trans-
port faible 7. L’objectif est de trouver les conditions nécessaires et suffisantes pour
qu'une mesure p vérifie I'inégalité de transport-entropie faible T4 pour un cofit 6
convexe.

Nos résultats principaux des sept premieres sections sont

— En dimension un, lorsque le cofit est convexe, le plan optimal de transport
faible T ne dépend pas de .

— Si 6 est une fonction quadratique-linéaire, I'inégalité de Poincaré restreinte aux
fonctions convexes, I'inégalité de transport faible TJ et I'inégalité de transport
faible T, sont équivalentes.

— Si 6 se comporte comme 2 au voisinage de 0, alors I'inégalité Ty est équivalente
a une propriété de contraction :

Ja,b>0,Yh >0, sup{U(x+h)—U(z)} <abd *(h+b).

oun U = F n Lo F. avec F la fonction de distribution et 7 la distribution
exponentielle de densité 7(dz) = § exp(—|z|)dz.
Ces résultats sont issus de [49] en collaboration avec Nathaél Gozlan, Cyril Roberto,
Paul-Marie Samson et Prasad Tetali.
Dans la section 8, sous certaines hypotheses sur #, nous montrons que l'inégalité
CmLS est équivalente a la propriété de contraction suivante :

da,b > 0,Yh >0, sup{U(z+h)—U(z)} < Va+bh.

Ce travail est extrait de [94] en collaboration avec Michal Strzelecki.

Le chapitre se conclut par une comparaison des inégalités de transport-
information et de Talagrand en dimension un. Cette section propose une condition
nécessaire pour les inégalités Tyl. Grace a cette condition, nons donnons un contre-
exemple d’une mesure probabilité 1 qui vérifie I'inégalité Ty mais pas Tyl pour tout
f convexe croissant. Les résultats de cette section sont un développement de mon
mémoire de Master.



Chapitre 2

Infimum convolution operators

Abstract

In this chapter, we are interested in infimum convolution operators of the forms

R (@) = inf{a(/)(s) + bz, 5)}.
This kind of formulas are widely used in many areas of mathematics. Here we will
focus on the following special cases.

— The classical Hopf-Lax formula

Quf(x) = inf {f(y) +ta (d('rt’ w)}, (2.0.1)

defined for all (say) bounded functions f on some metric space (X, d).
— The modified Hopf-Lax formula introduced in [50]

Qup(x) = inf {/gp p(dy) + « (/d x,y)p (dy))} (2.0.2)

peEP(X

where P(X) denotes the set of probability measures on X.
— The equilibrium case

ola) = inf{w(y)+ k(o)
where k is some cost function defined on some finite set E.
We will first recall briefly some properties of ();, then introduce a modified H-L-
O formula in a more general space. We will then analyse the regularity properties
of this operator @ and establish Hamilton-Jacobi type equations for this operator.
Finally, motivated by a large deviation problem, we shall focus on the equilibrium
case on a graph setting.

23
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2.1 Hopf-Lax formula in geodesic spaces

This section is a reminder about the classical Hopf-Lax-Oleinik formula. Let
a : R* — RT be an increasing convex function of class C! such that «(0) = 0. If
f X — Ris a semi continuous function bounded from below, one can define for
all t > 0 the function Q;f as follows :

Quf (x) = inf{f(y) +ta <d(xt’ y)>}. (2.1.1)

This formula is usually called the Hopf-Lax-Oleinik formula. The Hopf-Lax-Oleinik
formula is known to be the solution of Hamilton Jacobi equations, and is connected
to optimal transport theory through the Kantorovich duality formula. We recall
these properties below.

First of all, the family of operators {Q;}:~¢ satisfies the semi-group property

QtJrsf = Qt(@sf)
For t = 1, one has the Kantorovich duality formula

Theorem 2.1.2 (Kantorovich duality). Let u, v be two probability measures on X,
then it holds

Tauov) = sup [ Qufdu— [ fav

fect

where To (1, v) s the optimal transportation cost with cost function a.
We recall as well the definition of the optimal transportation cost 7T, (u, v).

Definition 2.1.3 (Optimal transportation cost). Let o : RT — R, with «(0) = 0,
be a measurable function referred to as the cost function. Then, the usual optimal
transportation cost, in the sense of Kantorovich, between two probability measures
1 and v on R is defined by

Talv.) i= inf [[ ald(w,y)) (dedy), (2.1.4)

where the infimum runs over the set of couplings m between p and v, i.e., probability
measures on X? such that w(dz x X) = pu(dz) and 7(X x dy) = v(dy).

Thanks to the Kantorovich duality theorem, the properties of this infimum con-
volution operator () lead to various properties of the optimal transport cost. It has
been proved to be a very powerful tool for analysing transport inequalities. We refer
[11], [99] and [48] for related works.

The Hopf-Lax formula satisfies the following Hamilton-Jacobi equation :

d
e (IV=Quf1) =0, (z.1) € X x (0,00) (2.1.5)
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Where a* is the Legendre transformation of o and the gradient |V~ f| is defined by

V™ fl(z) = lilgl_?;lp [f(yc)i(; J;()x)}_,

(by convention, we set |V~ f|(x) = 0 if = is and isolated point in X’). When the space
is (R™, ||.||l2), these properties are very classical. Recently, Ambrosio, Gigli and Savaré
in [3] and Gozlan, Roberto, Samson in [47] extended this result independently in a
general geodesic space.

Here are some more properties of @); borrowed from [47] in a geodesic space.

Theorem 2.1.6. Let f: X — R be a lower semicontinuous function bounded from
below. For allt > 0 and x € X, denote by m(t, x) the set of points where the infimum

(2.1.1) defining Q.f(z) is reached :

nlt.0) = (s € 2.Quf0) = 1) + ta (1220}

These sets are always non empty and compact and it holds for allt > 0 and x € X,

diQtf(x) =5 (1 max d(%?J))

t yem(t,x)
and
Q) =5 (5 min_dir,y)
dt_ T TG emin Y )
where f(h) = ha/(h) — a(h), h = 0.
Proposition 2.1.7 (Convexity). Let X = R" and d := ||.||2 be the Fuclidean norm.

Assume that f is a convex function on X, then the function Q.f is convez.

We refer [47] for more regularity properties of Q;f.

2.2 Modified Hopf-Lax formula in general space

In this section we only assume that (X,d) is a complete and separable met-
ric space in which closed balls are compact (for example (X, d) is a finite graph
equipped with graph distance). Observe that the proofs of properties of the latter
section rely heavily on the fact that the space is geodesic. If we consider the space
is not a geodesic space, although the operator () is still well defined, the semi-group
property, the Hamilton-Jacobi equation and many of the regularity properties men-
tioned before will fail. Therefore, we should introduce a modified Hopf-Lax formula
in order to adapt the results in a non geodesic space. An natural idea is to look at
infimum convolution of form

Quf(r) == ;gé{f(y) + Di(y, r)}.
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However, in a discrete space, say graph, there is not hope of finding such a family
of mappings (D;);~o such that the usual semi-group property Qs = Q¢(Qs) holds.
More precisely, we have the following result.

Proposition 2.2.1 (Semi-group property fails). Let G = (V, E) be a finite graph.
Assume we are given a family of mappings D;: V x V. — RT, t > 0 that satisfies
Dy(x,x) =0 forallz € V and allt > 0. Assume furthermore that for any f: V — R
and any x € V, Qi f(x) = inf ey {f(y) + D:(y,x)} — f(x) whent — 0. Then, there
exists f, x € V and t,s > 0 such that Qi sf(x) # Qi(Qsf)(x).

proof. By contradiction assume that for all f bounded on V', all z € X and s,t > 0,
it holds Q;Qsf = Qi1sf. The proof is based on the following claims.

Claim 2.2.2. For all z,z € V, all s < r € (0,00), it holds D,(z,z) =
minyEV {Ds(za y) + Dr75<y7 .ﬁl?)}

Claim 2.2.3. For all z,z € V', the map (0,00) > t — D;(z,z) is non-increasing
and, if © # z, Dy(z,x) — 00 as t goes to 0.

We postpone the proof of the above claims to end the prove of the proposition.
Fix x,2 € V, x # z. Then, by Claim [2.2.2] for all s € (0,1), it holds

Di(z,2) = min{Dy(z,y) + D1—s(y, 7)}

= min (Dls(z, x); ryn;?{Ds(z, y) + D1_s(y, x)}) .

By Claim and since the graph is finite, lim,_,o min,.{Ds(2,y) +D1_s(y,x)} =
oo. Hence, there exists s, € (0,1) such that, for s < s,, Di(z,2) = D1_4(z,z) so
that u, := sup{u € (0,1) : D1_y(2,2) = D1(z,x)} is well-defined thanks to Claim
. By a similar argument, there exists s; € (0,1 —u,) such that Dy, _s(z,z) =
D;_,,(z,x) for all s < s;. This contradicts the definition of u, and ends the proof
of the proposition provided that we prove Claim [2.2.3 and Claim [2.2.2]

Proof of Claim[2.2.3. Since Dy(x,z) is non-negative and D;(z,z) = 0, the claim is
trivial if x = 2. Assume that x # 2. Let s < r and consider f: V' — R defined by
f(z) =0and f(y) = D,(z,2) + 1 for all y # z. Then

Q. (x) = min{J () + Dy(y. )} = min (D, (z,0):min{ (5) + Dr(y,0)}
= D,(z,x).

On the other hand, by the semi-group property, similarly (necessarily u = z) it
holds

Qrf(x) = Qr—s(Qsf)(x) = g};g{f (u) + Ds(u,y) + Dr—s(y, )}
= gleig{Ds(z, y) + Dr—s(y, )}

which leads to the conclusion. O
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Proof of Claim[2.2.3 If © = z, the map ¢t — Dy(z,x) is constant and so there is
nothing to prove. Assume that = # 2. By Claimwe have for s < r (take y = z),
D, (z,z) = infyey{Ds(z,y) + D,_s(y, x)} < Ds(z, ) which proves that ¢ — Dy(z, x)
is non-increasing and that the limit lim, o D, (2, z) exists in [0, 0o]. For M > 0, let
f:V — R be defined by f(z) =0, f(z) = M and f(y) = M + 1 for all y # z,z.
Then

Qe (@) = mindF(v) + Dyl )} = win Dy (z,2); f(a)s min {£(9) + Duly, )}

=min (D,(z,2); M) < = (D,(z,2) + M).

1

2
Now, by assumption Q. f(z) — f(z) = M as r goes to 0 so that, taking the limit in
the latter guarantees that lim, o D, (z,z) > M which ends the proof of Claim [2.2.3
since M is arbitrarily large. O

The proof of the proposition is complete. O]

Another approach is to consider the following modified Hopf-Lax formula intro-
duced by Gozlan-Roberto-Samson-Tetali in [50].

Qrp(z) = inf {/s@ p(dy) + ta <W>}, (2.2.4)

peP(X

With this particular operator, they manage to recover the Kantorovich duality cor-
responding to the Marton transportation cost [76], [75].

Definition 2.2.5 (Marton’s transportation cost). Let p,v be two probability mea-
sures on X and 6 be a positive cost function. Define

Tl = ot { [a( [ ypa(dy)) uldz) |

where TI(p, v) is the set of all couplings m whose first marginal is p and second
marginal is v, p, is the probability kernel such that w(dzdy) = p,.(dy)u(dz).

Theorem 2.2.6 (GRST). With the definitions and the notations before, it holds

Ta(Vn) = sup {/@?@du - /de}-

Therefore, it will be very interesting to look at the properties of this operator @
and connect them with the Marton’s transportation cost.

This section presents some technical results about Q;, the goal is to establish a
Hamilton Jacobi type equations in a space non necessary geodesic. We start with a
convexity property.
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2.2.1 Convexity

Proposition 2.2.7 (Convexity). Let g be a function defined on X, then for all
xr € X, the function t — Q.g(x) is conver.

proof. Fix z € X, define G(t) := Q.g(x) Observe that for any A € [0,1], and
p1,p2 € P(X), setting p := Ap1 + (1 — N)ps € P(X), for all t,s > 0, denote
A= ﬁ, the convexity of the cost function « implies that :

Aa(ug) + (1 — Aa(ug) < alAug + (1 — Aus)).
Now let uy = [d(z, 2)p1(dz)/t and uy = [ d(z, 2)p2(dz)/s, we deduce that

e (f d(:v,i)pl(dZ)>+(1_A)sa (f d(z, Zs)pQ(dZ)> > (M+H(1-N)s)a (igf(f)_p(;lg)

As a consequence, we get

A [ oot + o (K )y ([ o) + sa (L1220 )

t S
J d(zx, z)p(dz)
(At =+ (1= N)s)

>/M@MM%+@FH1—M$a< >>GO#H1—MQ

Taking the infimum over all p;, p; € P(X) on the left hand side of the inequality,
the conclusion follows. O

Remark 2.2.8. This statement does not hold true for classical Hopf-Lax formula
in geodesic space.

Next, we are interested in the existence and properties of points where the infi-
mum defining @), is reached.

2.2.2 Existence of minimum

Now we will analyse the set of probabilities such that the infimum defined in
Q.f(x) is reached. We recall here the assumption on the space : (X, d) is a complete
and separable metric space in which closed balls are compact.

In all what follows, as in the classical case, we need to assume that f : X - R
is a lower semi-continuous function bounded from below. We let

myg(t,x) = {p e P(X): Quf (x) = /fdp+ta (W)} (2.2.9)

be the set (possibly empty) of probability measures p realizing the infimum in the
definition of @, f(x). In fact, this set is always non empty.
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Proposition 2.2.10. If f : X — R is lower semicontinuous and bounded from
below, then my(t,x) # 0 for allt >0 and x € X.

proof. Consider the function

F(p) — /fdp—l—ta (fd(x,y)p(dy))

t

The problem reduces to prove that the minimum of F' exists. We first show that
F is a lower semicontinuous function bounded from below. It is easy to see that
F' is bounded from below by m = infyx f. Since f is lower semicontinuous and
bounded from below, the function p +— [ fdp is lower semicontinuous w.r.t. the
weak convergence topology of P(X). For the same reason p — [d(x,y)dp is also
lower semicontinuous. Moreover, the sub-level sets of F' are compact. Indeed, for all
r > m, it holds

(F<r)c {p € P(X): /d(x, y) p(dy) < Ct,r} . with C, = ta™! <r - m) .

In particular, if p € {F < r}, then p(B(z, R)°) < C;, R, for all R > 0. Since
balls in X' are assumed to be compact, the compactness of {F < r} follows from
Prokhorov theorem.

Since F' is lower semi-continuous, bounded from below and has compact sub-level
sets, F' attains its minimum and so m(¢, ) is not empty. O

2.2.3 Regularity

In this section, we are going to analyse the regularity of the set my(t,z), by
comparing the operator @ with the classical Hopf-Lax-Oleinik formula () which is
defined on R. We will show that when x € X is given, there exists a real value
function f, : R — R such that Q.f(z) = Q.f,(0). This helps us understand
properties of @ through properties of (). Especially, since the function f; does not
depend on ¢, one can deduce the time derivative of Q, f(x) from the time derivative
of Q.

Now we are going to construct the function f,. We start with the following two
definitions.

Definition 2.2.11. Given x € X, let I, := {d(z,y),y € X} C R" be the image
of the function y € X w— d(x,y). Since (X,d) is a polish space such that all closed
balls are compact, I, is a closed subset of R. Define f,: [0,+00) = RU{oc} as

fe(u) = min — {f(y)}.

yEX d(z,y)=u

with convention that min () = co. We notice that f,.(0) = f(x) and f.(u) is finite if
and only if u € I,.
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Let fx be the convex hull of I,.. Since closed balls are assumed to be compact,
I, is one of the following intervals [0,sup I,] (if I, is bounded) or [0, +o0) (if I, is
unbounded). Let f, : R* — R U {400} be the convex hull of f,, that is to say the
greatest convex function g : R — R U {400} such that g(u) < f.(u) for all u € I,.
The function fw takes finite values on _735 and is +oo outside fx

Definition 2.2.12. Let f, : Rt — RU {+o0} be the convex hull of f,, that is to
say the greatest conver function g : R — R U {400} such that g(u) < f.(u) for all
u€l,.

Proposition 2.2.13. Let f : X — R be bounded from below and lower semi-
continuous. Then for all t > 0, all x € X, it holds

Qif(z) = Quf2(0).

proof. Fix f: X — R bounded from below and lower semi-continuous, and x € X.

It holds
@tf(ﬂf) = inf {/fd]H—ta <W>}

pEP(X)

— inf {g.(w) +ta (4]},

0(10) mf{/fdp pEPX /dxy (dy)_u} u € R*.

where

Let us show that g,(u) = fo(u) v € RT. If u is outside I,, then both functions are
equal to 400 and there is nothing to prove. It is enough to show that g, = fw on I,.

First choosing, in the definition of g,, p = d, for some y € X such that d(x,y) =
u € I, one gets that g,(u) < f(y). Optimizing over all y such that d(z,y) = u, one
concludes that g,(u) < f.(u) for all u € I,. Moreover the function g, is easily seen
to be convex. By definition of the convex hull of f,, it follows that g, (u) < fa(u) for
all u € I,. Now let us show that g, > f,. For all y € X, it holds fly) = fo(d(z,y)).
Therefore, if p is such that [d(z,y)p(dy) = u € I,, then denoting by p € Pu(1)
the image of p under the map y — d(z,y), it holds

[ 1wty > [ L) pldy) = [ L.0)5d0) > [ L)) > L)

(2.2.14)
where the last inequality follows from Jensen inequality. Optimizing over p, yields
to g, > f, on I, and so g, = f, and this completes the proof. n

Here we have another way to define fx on I, which allows to get more regularity
property. With this lemma, we are able to show that there exists a probability
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measure of form A, + (1 — A)J,, who achieves the infimum defined on Q,, for
strictly increasing cost function.
Let P,(I;) be the set of probability measures on I, with expectation u, i.e.

J1, yo(dy) = u.

Lemma 2.2.15. Let f : X — R be a lower semicontinuous function and define f,
and f, as above. Then, for all u € I,

fu(u) = inf {/ fe(w) g(dw) : q € Py(I,) charging at most two poz’nts} . (2.2.16)
I

Moreover, the function fx is continuous on I, and lower semicontinuous on R.
Proof of Lemma [2.2.15. Fix f: X — R bounded from below and lower semicontin-
uous, z € X and u € R*. According to e.g. [56][Proposition B.2.5.1],

fo(u) = inf {/I fz(w) q(dw) : q € P,(I,) with finite support} .

Applying Caratheodory’s Theorem (see e.g. [56][Theorem A.1.3.6]), ones sees that
one can assume that the infimum is over probability measures ¢ charging at most
three points. Let us explain how to reduce to two points.

Fix € > 0; there exist wy, wy, w3 € I, and Aj, Ao, A3 € [0, 1] with 3, \; = 1 such
that v = A\jw; + Aqws + A3ws and

Fo(w) = M fo(wi) 4+ Ao fu(ws) + As fu(ws) — €

Without loss of generality we can assume that w; < we < ws, and for example that
w; < u < wo (the other case is similar). Then there exist a,b € [0, 1] such that

u=aw; + (1 — a)wy = bw; + (1 — b)ws.

Then it is not difficult to check that there is a unique A € [0, 1] such that A\; =
Aa+ (1 —=A)b, Aa = A(1 —a) and A3 = (1 — A\)(1 — b). Therefore it holds

u=(Aa+ (1= Nb)w + A1 — a)wy + (1 — A)(1 — b)ws
and
Fo(w) = a4 (1= A)b) fo(wn) + A(1 = a) fu(ws) + (1 = A)(1 = b) fo(ws) — .
By definition of f,(u), necessarily,

falu) < min]{(sa + (1= 8)b) fa(wi) + s(1 — a) fa(wz) + (1 = 5)(1 = b) fo(ws)}.

s€[0,1

Since, in the right hand side of the latter, the function of s that needs to be mini-
mized is an affine function, the minimum is reached at s = 0 or s = 1. Therefore

fo(u) = min{afo(wy) + (1 — a) fo(wz), 0fs (w1) + (1 = 0) fu(ws)} —
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which proves that, for all € > 0, there exists ¢ € Py(1,) such that [vq(dv) = u and
[ fo(v) q(dv) = fo(u) = [ fa(v) q(dv) —e. Since € > 0, this completes the proof.

Now let us prove that f; is continuous on I,. By definition, fx is a convex
function on the closed interval fx, thus it is continuous on the interior of I,. Hence
it only remains to prove that f, is continuous at 0 and, in case I, is bounded, at
b = max I,. We only give the proof of the continuity at 0, the other case is similar.

Take z, € X \ {z} and let u, = d(x,z,) € I, \ {0}. Since f, is convex, on I, it
holds, for all 0 < u < u,

~ ~ (U u u uw\ =
= = fo |l — U 1——)0) < —fulu, 1——) f.(0).
Folw) = o (S (1= 290) < ) + (1= ) (0)
Thus letting v — 07, one gets that limsup,,_,q+ fx(u) < fx(O) Now, we prove that
liminf, ,o+ fz(u) = f.(0). Thanks to the lower semicontinuity of f, for all € € (0, 1),
there exists n), for all y € B(x,n), f(y) = f(z) — e. Thus, from the definition of f,,
it follows that for all u € [0,7),

On the other hand, if m is a lower bound for f, then f,(u) > m for all u € [0, c0).
Therefore, it holds

f:c(u) = (fa:<0) - 5)1[0,77)<u) + ml[n,OO) = ge(u)a Vu € [07 OO),

(here we use that by definition f,(u) = 400 when u ¢ [,). Taking a smaller m
if necessary, one can assume that f,(0) —e > m for all € € (0,1). Now consider,
the affine function h. joining (0, f;(0) — ¢) to (n,m). It is clear that g. > h. on

[0,00). Therefore, by definition of f, as the greatest convex function below f,, it
holds f, > h. on [0,00). In particular,

lim inf f, (u) > lim inf he(u) = f2(0) — &

Since ¢ is arbitrary, one concludes that lim inf, o+ folw) = f2(0) > £.(0). In con-
clusion, lim, .o+ fz(u) = f(0) = f.(0), which completes the proof. O]

The following lemma illustrates when the latter infimum could be achieved. This
lemma seems classical and it might be found in some convex analyses document.

Lemma 2.2.17. Let f be a lower semi-continuous function bounded from below
define on a close set I C R. Let g be the largest convex function such that g < f on
I. For all affine function h, define I}, := [a,b] be the maximum interval such that
g — h reaches its minimum. Then, if a # oo, it holds that a € I and f(a) = g(a),
and the same conclusion holds for b if b # oc.
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proof. Without loss of generality, we can suppose that I, = [a,b] with a # £o0. It
is enough to show that f(a) = g(a), the other cases are similar. The definition of g
implies directly that g(a) < f(a), so we now turn to prove the inverse inequality.
Changing h into h + constant, we can suppose that g —h =0 on [, and g — h > 0
on R\ [,. Let h, the affine function such that h,(a — 1/n) = g(a — 1/n) and
hn(a + 1/n) = g(a + 1/n). By definition of I, h,(a — 1/n) > h(a — 1/n) and
hn(a+1/n) = h(a + 1/n). It follows that h,(a) > h(a) = g(a). Thus, if we define
gn : © — max{g(z), h,(x)}, then g, is a convex function greater than g. Thus, the
definition of ¢ implies that the existence of z, € I such that f(z,) < ¢,(2,). Notice
that g, = gon R\[a—1/n,a+1/n], so z, € [a—1/n,a+1/n|. Hence, lim,, o, 2, = a
and it holds

g(a) = h(a) = nhj& h(zn) < nlgrolo f(zn)
< Jim g,(2) < Jim ma{g(a— 1/n). g(a-+ 1/n)} = g(a)

Thus, by lower semi-continuity of f, we have g(a) = lim, o f(2,) =
flim,, o 2,) = f(a). The proof is completed. O

As a consequence of the latter lemma, suppose that the largest affine part con-
tains (u, fo(u)) is ([au, b, fo([au, bu])), if by < oo, then we have a,,b, € I, and

fw(CLU) = fx(QU)a fw<bU) = fz(bu) Hencev
Fow) = [ fow)aldw),

where ¢ = \d,, + (1 — N\)dp, with A satisfies u = Aa,, + (1 — Aby,).
Finally, let

it x) = {u ERY: QL (0) = Folw) + ta (?)} . (2.2.18)

This set is easily seen to be non-empty using the lower semicontinuity of fx (see
also Item (i7) of the following result.)

2.2.4 Time derivative

Now we are ready to calculate the time derivative :

Theorem 2.2.19. Set f(z) := zd/(x) — a(z), x > 0. Let f : X — R be bounded
from below and lower semi-continuous. Then,

(i) Assume that the cost function o is strictly increasing, then for allt > 0 and all
r € X, it holds

{/d(:p, Y) pldy) : p € mf(t,x)} = gt 2). (2.2.20)
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(i7) For all x € X and all t > 0, the function u — [(u/t) is constant on ms(t, x).
In particular, the function p — [ ([ d(x,y) p(dy)/t) is constant on mg(t,x).

(iv) For allt >0, x € X and p € mg(t,x), it holds

5 Quta) = g (LA}, (2221)

Proof of Theorem[2.2.19. Item (i). Let p € my(t,x) and u = [ d(z,y) p(dy). Then,

according to (2.2.14)), one has f.(u) < [ fdp. Hence, using the very definition of
my(t, ), Item (7) and the definition of @, f,(0), it holds

Jd(z,y) p(dy)
t

f;(u)—l—ta(?) g/fdp—irta(
<ﬁ(u)+t0z (?)

) = @tf(ﬁ) = Qtfx(o)

It follows that Q1 fx(0) = f(u) + tar (%) and thus that u € iy (t, ) which, in turn,
guarantees that { [ d(x,y)p(dy) : p € ms(t,x)} C mys(t, x).

Conversely, let u € my(t,x). Firstly assume that the cost function « is strictly
increasing. If u = 0, then it suffice to take p = dy and it is easy to see that p €
my(t, ). Now suppose that u > 0. Let ([ay, by, fu([au, bu])) be the largest affine part
of the graph f, which contains (u, f,(u)). If b, < co, then thanks to lemma2.2.17
folaw) = folay) and fy(by) = fu(by). As a consequence, there exist y; and y, such
that fx(au) = f(yl) and fm(bu) = f(yQ)a d({L‘7y1) = Qy, d(m7y2) = bu It is suffice to
define p := Ad,, + (1 — A\)d,, where X satisfies Aa, + (1 — X\)b, = u. Moreover, by
Item (i) and by definition of m¢(t,z) we have

Jd(z,y) p(dy)

Guf () = Qu(0) = Fatw) + 1 (2) = [ fdp+-ta ( /

) > Qf (v)
which proves that p € m¢(¢, z) and thus that u € {[d(z,y) p(dy) : p € ms(t,x)}.

Now we turn to the case b, = co. Let h be the affine function which is coincide
with f, on [a,,00). Since f, is bounded from below, so is h. It follows that A’ > 0.
Hence, z — f.(2) + ta(z/t) is strictly increasing on [a,,00). On the other hand,
u € T (t,z) implies that u achieves the minimum of function z — f,(2) + ta(z/t).
Thus u = a, and there exists y € X such that d(z,y) = u and f(y) = fo(u) = fo(v)
by lemma [2.2.17 Again by Item (i) and by definition of my(¢,2) we deduce that
the probability p := 6, € ms(t,z) and u € {[d(x,y) p(dy) : p € my(t,x)}.

Let us prove Item (7). By definition, m (¢, z) is the set where the convex function
F(v) = f(v)+ta(v/t) attains its minimum on R*. Therefore 724 (t, ) is an interval.
Suppose that u; < ug are in my(f,z), then F' is constant on [ug,us]. Since both
functions f, and ta(- /t) are convex, this easily implies that these functions f, and
ta(-/t) are both affine on [uy,us]. In particular, o/(u/t) is constant on [u, us).
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It follows that B(ug/t) = (ug/t)a/(ua/t) — a(ug/t) = (uz/t)a’(ur/t) — a(uy/t) —
o (uy/t)(u2 — uyp)/t = B(uq/t). This shows that §(- /) is constant on my(¢, z).
Let us turn to the proof of Item (iv). According to [47, Theorem 1.10] (which

applies since fw : R — RU{+o0} is bounded from below and, according to Lemma
2.2.15| lower-semicontinuous), it holds

thﬂ(O)__ﬁ max 7 s (t, )
dt, t ’

and

thf;(O) B minmy(t, v)
dt_ - ( t ) ’

where d/dt. stands for the right and left derivatives. According to Item (i) the

function B( - /t) is constant on my(t, z). Therefore, the left and the right derivatives

of t — Q; fm(O) are equal, and so the function is actually differentiable in ¢. According

to Ttem (1), Q.f(z) = Q.f.(0) and, according to Item (ii), {[d(z,y)p(dy) : p €
my(t,z)} C my(t,z) which proves (2.2.21)). O

Let us mention an interesting consequence of the proof of Item (i7). Let us denote
by P2(X) the set of probability measures on X charging at most two points :

Po(X) :={(1—s)d, +s6,: s€[0,1], z,y € X}.

Proposition 2.2.22. Let f : X — R be a lower semicontinuous function bounded
from below. Then

0f () zinf{/fdp+ta (W) pe 772(X)}.

Démonstration. Tt is enough to show that for all e > 0, m5(t,z) N Pa(X) # 0
(recall the definition of m®(t, z) given in Item (ii) of Theorem . Actually, this
follows immediately from the argument given in the proof of Item (7). Indeed, we
showed there that for all u € mg(t, ) there exists p € Po(X) Nm5(t, ) such that

Jd(z,y) p(dy) = u. 0

2.2.5 Change of scale

Since the we have always the term Q) in the Kantorovich duality formula for the
transport cost, I would like to detail a lemma for the change of scale for some special
cost. Let the cost function a(x) = az?, then it is easy to show that Q:(tf)(z) =
tQ.f () for all t > 0.

Now define a quadratic-linear cost function o, a, h > 0 with

2 <h
ozg(x): ax 2 T
2ax — ah® x > h.

then we have the following lemma.
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Lemma 2.2.23 (Change of scale). Let f be an [- Lz'pschz'tz function and Q, be the
inf-convolution for a quadratic-linear cost function al a,h > 0. Then, for allz € X

and all t < (ah)/1, it holds Q1(tf)(x) = tQ.f(x).

proof. Fix t < ah/l and x € X. For all p € mys(1, x) (defined in (2.2.9)) we have by
Item (i) of Theorem [2.2.19

/tf p(dy) + ol (/dxy (dy))z@l(tf)(x)gtf(a:).

Hence
ol ([ dlw.yypldy)) <t [ () = £) pldy) <HVFI(@) [ da,y) pldy)
<ﬂ/d%pry<a@/dmprw,

where we used that f(z) — f(y) < |[Vf|(z)d(z,y) and the fact that f is -Lipschitz.
Since for quadratic-linear cost a*(u) < ahu if and only if u < h, the above inequality
implies that [ d(z,y)p(dy) < h and that o ([ d(z,y) p(dy)) = a (J d(z,y) p(dy))°.

Therefore 2
Qi(tf)(z) = peig(fx) {/tf dp+a (/ d(z, y)p(dy)> } :

Similarly for all ¢ € my(¢, x) it holds

[ 50 atdy) + 10 (fd(x,z?q(dy)) < )

Therefore

(f dr, ) [ dy) < V(@) [ d(.y) aldy)

l/dxy p(dy) < /dry q(dy).
This (due to the specific shape of the quadratic-linear cost) leads to

2
[d(z,y)q(dy)/t < h and o (W)Q(dy)> (fd(z’y)q(dy)> . Therefore,

t

Qo = aat, { [ 1o+ 8 (f ey stan) }.

As a conclusion,

1Quf (@) =t inf { [raa+%(/ d(x,y>p<dy>)2}

_ {/tfdp+a(/dxy (@) }:cz(tf)(m).
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We will use this lemma to deal with the connection with Poincaré inequality and
transport entropy inequality in the next chapter.

2.3 Hamilton-Jacobi equation

In this section, we will show that the modified Hopf-Lax formula satisfies
some Hamilton-Jacobi type equation. In order to illustrate the idea, imagine in the
first place that we can do all the manipulations that we want, functions are con-
tinuous and bounded, infimums and supremums are all minimums and maximums.
Then informally, we can rewrite the operator Q as follows :

~ 1
= inf { D)+ WS, }
Qif(z) p€17131(/"(') (f,p) + o 1 (62, p)
where we consider the integration of f with respect to measure p as a scalar product
(f,p), and W, denotes the L' Wasserstein distance. -
Intuitively, by analogy with the classical case, the time derivative of Q;f(x)

should be 1

The core difficulty is to find a proper space derivative.

In a discrete space, an estimation of a space derivative is essentially some kind
of estimation of difference. Now take z,y € X and let us try to say something
about Q,f(z) — Q.f(y). Denote by p, and py the probability measures such that
the infimum defined in Q,f(x) and Q,f(x) are reached respectively. One can write

~ ~ 1
Qtf(aj) - Qtf(y) = <f7 Pz — py> + 2715 (Wf(axapx) - Wf(dyapy)) . (231)
Now take an interpolation between p, and p, :

Pa = Apy + (1 = A)p,.

Then for all A € [0, 1], one has
1 _
GO = (1) + Wi 2) < Quf(2) = G(0).
We deduce that G’(0) > 0, which is equivalent to,

1
(f, Py — Pa) + Q*tQWI((Smpx) (W1 (02, pe) — Wl((s%py)) =0,
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plug it in to equation (2.3.1]), we get

Quf () = Quf (1) < 5 (WEBar12) = WED 1) = 2Wia(Bas ) (Wi, ) — W6 y)

1

= o Wi ) Wi (0 py) — Wi, p2) = W3, p,))
1

< ﬂ (2W1 (5x7p:r)Wl (5x7py> —2W (5x;pa:)W1 (5yapy))
1

< ¥W1(5x,px)d($,y)

Here the last step we used the triangle inequality
W1(6x7py) - Wl(5yapy) < Wl(dra 6y> = d(x, y)‘

As we had mentioned before, the time derivative %@t f(z) should be
—#Wf(éw pz). Thus, the following holds for all z,y :

5 - 1 (1Quf (@) = Quf )]+
a@tf((f) + B ( d(z,y) ) <O

Taking the supremum over y € X, and defining |V f|(z) := sup, %, we
have a Hamilton-Jacobi type inequality :

0 ~ 1.~ ~
a@tf + §|VQtf‘2 < 0.

Now we are going to prove it rigorously.
Recall that o* the Fenchel-Legendre transform of a.

Proposition 2.3.2. Let f be a lower semi-continuous function bounded from below.

(i) For allx € X, allt > 0 and all p € my(t,x), it holds

VQ:if|(z) < o (W) ' 259

(i) Assume that f reaches its minimum at a unique point x, € X, then for all
r € X\ {x,}, it holds

VfI(z) = 11, (0)], (2.3.4)

and |/va|(x0) = 0. Moreover, if f reaches its minimum in two or more points,

or if f does not reach its minimum, then (2.3.4) holds for all x € X.
Remark 2.3.5. Observe that, if f reaches its minimum at a unique point x,, then it
could be that fx;(O) # 0. For example consider, on X = R", f(x) = x that reaches

its minimum at x, = 0. Trivially fo,(z) = = for all z € X so that JZ;(O) = 1.
Hence, there is no hope for (2.3.4) to be true at x, in general.
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proof. First let us prove item (i). Consider y such that Q,f(y) < Q.f(x) (if there

is no such y, then |[VQ,f|(z) = 0 and there is nothing to prove). By Lemma
there exist p, € ms(t,x), p1 € my(t,y) and according to Item (ii) of Theorem

2.2.10

P

2.2.19

d

= [d(x,z) po(dz) € mys(t,z) and u; = [d(y, z) p1(dz) € my(t,y) and it holds

)= [ Fdpotta(us/t)  and  Quf(y) = [ fdpi+ta(u/t) (236)

Now, set px := (1 = A\)po + Ap1, A € [0, 1], u:= [ d(z, z) p1(dz) and observe that, by

definition of @),

Quf(z) < /fdp,\-i—ta (fd(iv,zt)p,\(dz)> :/fdp,\+ta ()\u—l-(l—)\)u

t
Since the latter holds for all A € [0,1] the function

Au~+ (1 —Nu
t

g:AH/fdpwta( ) - Qi)

is always non-negative. Therefore, since g(0) = 0 and
= ([ fdp = [ £dpo) + (w =)o (uo/t) > 0
which ensures that
/fdpo — /fdp1 < (u — up) (u,/1).
On the other hand, since d(z, z) < d(z,y) + d(y, ), it holds
u=[d,2)p(d=) < [(d,y) +dly, 2) pr(dz) < w + d(z,y).

As a consequence, it holds
u—up <d(x,y).

such that Q,f(z) > Q,f(y), it holds
(Quf(y) = Quf ()] = Quf (x) — Quf (y)
=y [rimeife() o (7))
<o (2) o (4)
<ot et (£) ot (%) (o () = (4

(2.3.7)

(2.3.8)
Thanks to (2.3.6), (2.3.7) and (2.3.8)) together with the fact that o’ > 0, for all y
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Therefore, by convexity of o, we conclude that

- () s1(o (%) - (2)) 0

and in turn that for all x,y € X,

U

[Qif (y) = Quf ()] - < d(z,y)o’ (;)

which leads to the expected result by taking the supremum over y # x.

Now we turn to the proof of Item (ii). Fix x € X. The proof relies on the
existence of a point y # = such that f(y) < f(x). Such an existence is guaranteed
for all x € X (resp. for all z € X\ {z,}) when f does not reach its minimum or
reaches its minimum in more than two points (resp. when f reaches its minimum
at a unique point x,). Given such a point y, by definition of f,, we have

f2(0) = f(2) = fy) = [o (d(w,y)).

Thanks to the convexity of fx, the slope function

fo(u) = fa(0

OB A0
u

is non-decreasing. It follows that

SN A B A

£, (0) = e o) = £o(0) _ i (d(2,y) — a(0)

u—0+ U u>0 U = d(fL‘, y)

< 0.

Taking the absolute value, we get

7O = sup UL,

u>0 u
Observe that, according to Lemma [2.2.15] for all v > 0, f;(u) = inf [ f dp where

the infimum is running over all p € P,(X) such that [ d(x, - ) dp = u. Hence, setting
P =My, + (1 = X)dy,, y1,92 € X, X € [0,1], we have (recall that f,(0) = f(z))

N O R LY (D R (e ()

u>0 Y1,Y2€X,A€E[0,1]s ¢ u
Ad(z,y1)+(1—-N)d(z,y2)=u

L M@= S0) + (1= V() = ()
Y1,42€X,A€[0,1] Ad(z,y1) + (1 = A)d(z, y2
= sup L W) 540,

y#T d(xv y)
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where the last equality comes from the fact that the function A — % (with

¢,d > 0 and a,b € R) is monotone on [0, 1]. This proves (2.3.4). That |V f|(z,) = 0
is a direct consequence of the definition of the gradient. O

Now we are in position to state the Hamilton-Jacobi equation which is satisfied
by Q.

Theorem 2.3.9. Let f: X — R be a lower semi-continuous function bounded from
below. Then, for all x € X, it holds

(i) For allt >0, 2Q:f(x) + o (|[VQuf|(z)) < 0.
(4i) Assume that o is well define on [0,1), (i.e Vo € [0,1), a*(I) < 00.) Then for
all © such that |V f|(z) € [0,1), lim;—0 Q:f = f and it holds

2 Q@)+ o (W71) = 0.

Remark 2.3.10. [In Item (ii), if lim, o a(x)/x = 00, we can take | = oo, then
the latter equation holds for almost every x € X.

If f is | — e-lipschiz then \%ﬂ(az) < | and the latter equality holds. Moreover, if
there exists h such that o/(h) = [, then the latter holds for all x such that
IV fl(z) € [0,1].

proof. We will first prove Item (¢). On the one hand, by Theorem [2.2.19, for all
t > 0, it holds

0 ~ Uy

el — B2 X

51 @/ (@) ﬂ(t)’ ve
where u, € my(t,z). On the other hand, since o* is non-decreasing, Proposition
2.3.2l ensures that "

o (|VQtf|(m)) <af (o/ (0>> .

t

In order to conclude, it is enough to observe that, the function G := y — yao/ (%) —

a(y) is a concave function and G’ (%) = 0. Hence,

(o (He)) = 1) _ o (e _ [t gt
“ (Q <t)> f’féﬂ%{ya (t) O‘@)} r < (t) O‘(t) B(t)'
Now we turn to the proof of Item (i7). If x = z, is a minimum of f (if any), then
(observe that Q;f(x,) = f(x,) for all t > 0) it is easy to see that

0 ~ @tfx—fx « (1
9 Gt =l @D IO e (19 10)) = 0

i
t—0 t

and the claim follows. For the remaining of the proof we assume that z € X" is not
a minimum of f. Thanks to Theorem [2.2.19] for all ¢ > 0, it holds

Quf () — (&) Qufo(0) — f2(0)  fuluw) — £2(0) u
/ - t - t ta <t) ’
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where u € my(t, ).
Let us prove that u > 0. Since x is not a minimum of f, there exists y € X such
that f(y) < f(z). Fix t > 0, by the very definition of @, for all A € [0, 1], choosing

p=(1—=X)d; + Aoy,

it holds that

Quf(e) < (1= NJ) + 210) + 0 (24720,

Define

G:Ael0,1]— (1 =Nf(z)+\(y) +ta <)\d(f’y)>

Then
G'(0) = (0)d(z,y) + f(y) = f(z) = fy) = fz) <O.
Thus, there exist A € (0,1) such that

Qif(2) < G(A) < G(0) = f(x).
Hence B N N
folu) < Quf(z) < f(2) = f2(0)
and therefore u > 0.
According to Lemma , for all z € X, f, is convex and continuous on I,.
It follows that M > £.(0). Since f,(u) < Quf:(0) < f2(0), we have that

M is non-positive and M < |f;l(0)| Hence,

f(z) —t@tﬂx) _ [:0) - folw) _ OF f<0>—f<u> —.

t

u

where the last inequality comes from the fact that o is non-decreasing. This leads

to ~
Quf (z) — f(x)
t

lin inf > —a" (I, 0)) . (2.3.11)
by passing to the limit. B
Next, we prove that limsup,_,, w < —af (|f;’ (O)]) By convexity of f,,

for all h € (0,u), it holds

=%  fol) = flu=t) (2:312)

u
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On the other hand, since (by definition of u)

ﬁ:(U)%—ta(?) <J§:(U—h)+ta<u;h>’

we have B B .
; < 7 . 3.
According to and , for all h € (0,u), it holds :
Quf @) = ) _ L) =) | quy _wa () -a(})  u
t - t +a<t><t h/t +a<t)'

Let h goes to 0, we get that

@tf(:v)t— f@) Uy (z) fa <?;> _ 5 (7:) . (O/ (;‘)) (2.3.14)

where we recall that § is defined in Section [2.2, Hence, it is enough to prove that
lim; 0 &/ (%) = | £, (0)|. Since f, is convex, it is right and left differentiable at every

point. Hence taking the left derivative of v — f,(v) + ta (%), for all t € Rt and all
u € my(t,x), we have

/(2) <=hin

Let | := lim, o o/(7), it is easy to see that a*(z) < oo when x <[ and = oo
when x > [. By Item (i) of Proposition and convexity of f, and Equation
(2.3.4)), there exists h; < [ such that the following holds :

o (B) < 2 F ) < 1 0) = [971() < /().

t U_

By convexity of «a, the latter inequality leads to ¥ < hy for all £ > 0. We conclude
from the above argument that v € m(t, x) goes to 0 as t goes to 0.

Now, taking the right derivative of v ﬁ(v) + ta (%), for all t € R™ and all

u € my(t,x), we have
u

d -~
/
n > 7z .
Since lim,,_,o ﬁ f1(u) = f,/(0) and using the monotonicity and the (right) continu-

ity of a® when t goes to 0, we have thanks to

lim sp Qo (“””)t_ f@) « o (17, ©)) (2.3.15)

This combined with [2.3.11] and Propositio leads to the desired result.
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2.3.1 Examples
Example of R", equality case

The equality of Hamilton-Jacobi system can hold in some specific cases.

Let X = R" equipped with norm euclidian || - ||2). Assume that the cost function
« is convex, of class C' and o/(x) goes to oo as z goes to oo. Then for all function
f convex and of class C? and all t > 0, it holds

0 ~ * 17 ) _
a@tf +a*([VQ.f]) = 0.

We illustrate this with the following proposition.

Proposition 2.3.16. Assume that X = R" equipped with a distance d coming from
a norm || - ||. Then, for all f: R™ — R convex and bounded from below, Q.f = Q+f.

proof. By convexity of f and of the norm, Jensen’s Inequality and the monotonicity
of o imply that, for all p € P(R™) such that [ ||z| p(dx) is finite, it holds

[ttty v (HEZIRID) 5 (f i) 00 (e [untan).

t

Hence, setting z := [yp(dy) € R™ and optimizing we get

[z =y p(dy)>}

Ouf()= inf {/f@H%a( /

pst. [ [l p(de)<oo

[z — 2|

> inf {f(z) + ta ()} =Quf(v)

zER"™ t
which leads to the desired result. O

According to the latter Proposition, we have the following equality case :
Let a(z) = 2?/2, z € RT and f: R® — R convex. Then for all ¢ > 0,

LQuf () + 0" (9QufI()) = 0 =0,
n
i.e. there is actually equality in Item (i) of Theorem [2.3.9

To prove this fact, we observe first that, since limy,_,o, o/(h) = oo, the thesis
follows from Item (ii) of Theorem when t = 0. For ¢t > 0, since f is convex,
Proposition ensures that Q.f = Q.f. Moreover, for all convex function f,
Q:f is a convex function which guarantees that |VQ.f| = |VQ.f| (where |V - |
is the Euclidean length of the usual gradient). Hence, the claim follows from the
classical Hamilton-Jacobi equation that precisely asserts that for ¢ > 0, %Qt f(z)+

HVQufP () = 0.
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Example of the two points space {0, 1}, strict inequality case

Let a(z) = 2%/2 and X = {0, 1} (the graph consisting of two points). Consider f
such that f(0) = 1 and f(1) = 0. It is easy to see that for t € (0,1), Q.f(0) =1 — %
and Q,f(1 ) = 0. It leads to |[VQ.f|(0) = 1 — L and 2Q,f(0) = —L. Thus, for all

€ (0,1), 5 2Quf(0) + 2|VQtf| (0) <0, d.e. the inequality in Item (i) of Theorem
2.3.9 is strlct We observe that, more generally, the same conclusion holds as soon
as X has at least one isolated point z, (take f with f(x,) =0 and f(y) =1 for all

y;é:rjo).

2.4 Equilibrium case

In this section, we focus on the equilibrium case : the equation w(z) =
infy.y »yep{w(y) + k(y,x)}. The motivation is from a consideration of the follow-
ing large deviation problem.

2.4.1 Motivation and assumptions

We consider an e-parametrized discrete-time Markov chain X = (X)),

with finite state space V. We write p.(-,-) for the transition probabilities, i.e.
pe(,y) = P(X; = y|X ) = 2).

We assume the following properties :

(A1) There exists an e-independent subset £ C V' x V such that p.(x,y) > 0 if
and only if (z,y) € E;

(A2) For any & > 0 the Markov chain X® is irreducible;

(A3) There exists a function k : e = (x,y) € E — R, such that

liﬂ)l —clogp:(z,y) = k(z,y) V(z,y) € E. (2.4.1)

We introduce the oriented graph G = (V, E) having vertex set V' and edge set
E. Then, due to assumption (A1), assumption (A2) is equivalent to the property
that the graph G is strongly connected, i.e. for any z,y € V there is an oriented
path with edges in E from x to y.

Since G is strongly connected and V' is finite, the Markov chain has a unique
invariant distribution, that we denote by 7). Recall that 7(¥)(z) > 0 for any z.

The following static large deviation principle holds (cf. [39]) : For any z € V' the
limit lim,; —elog7®)(z) =: W (x) exists, moreover W(z) > 0 for any x € V and
min W(z) = 0.

It is simple to check that the rate function W satisfies the following equation :

Wi(z)= inf {W(y)+ k(y,x)}. (2.4.2)

y:(y,z)EE
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Indeed, since 7(°) is invariant, it holds 7(%)(z) = SV 7 (y)pe(y, ), hence

max 7 (y)pe (y, ) < 7 () < |V max 7 (y)p-(y, z) .
yeVv yev
By taking —¢log(-) and the limit ¢ — 0, one gets (2.4.2)).

We now recall a graphical construction of the rate function W presented in [39)].
Given a vertex x in V, an oriented graph g is said to belong to the family 7, if it
is a directed tree inside G having vertices V', rooted at x and pointing towards the
root. This means that

— ¢ is an oriented graphs, with edges in F;
the vertices of ¢ are all the states in V'

— every vertex y in V' \ {z} is the initial point of exactly one oriented edge;
— for any y € V' \ {«} there exists a (unique) oriented path in ¢ from y to z;
— no oriented edge exits from z.

Then (cf. [39])

W(z) = ffé% > k(e) — min grel%l > k(e), (2.4.3)

eeg ecyg

where the sum among e € g means the sum among the oriented edges e of the
directed tree g.

2.4.2 The equation w(z) = inf,., yep{w(y) + k(y,z)}

We focus now on the equation

w(z) = inf E{w(y) + k(y,z)}, VeeV. (2.4.4)

y:(y,w)€
with an assumption on & :

Assumption 1. For all x, there exists y such that (z,y) € E and k(z,y) = 0.

First we observe that for any x we are taking the infimum on a finite non—empty
set (and therefore the infimum is indeed a minimum). In fact, given x € V' we can
fix some z € V'\ {z} and, since G is strongly connected, we know that the is a path
from z to z. Considering the last edge of this path, we conclude that there exists
y € V such that (y,z) € E.

Trivially, for any ¢ € R, if w is a solution of then also w+c is a solution of
. We call canonical solutions the solution w such that minw = 0. An example
of canonical solution is w = W.

Definition 2.4.5. (Pseudo-distance function) We define D : V x V — R, as

D(z,y) = min{> _k(e) : v is a path from z to y in G}. (2.4.6)

ey
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We denote v, the beginning vertex of the path v and v the final vertex of v. By
convention that v = (x) is a path from x to x, we set that D(z,x) = 0 for all
x € V. Now we can extend the domain of the Pseudo-distance function : define the
pseudo-distance between two subset of V', or between a subset and an element of V
as following :

V‘/l,‘/Q C VaD(‘/h‘/Q) = min{D(U17U2)7 (Ulan) € ‘/1 X ‘/2}

and
Vee V,U CV,D(U,z) = min D(y,x), D(z,U) = min D(x,y).
yeU yeU

Remark 2.4.7. Assume that w is a solution of (2.4.4)). By iterating equation (2.4.4)),
it holds for all (z,y) € V XV :

w(z) <w(y) + D(y, ). (2.4.8)

Definition 2.4.9. We introduce another oriented graph G' = (V, E') having vertex
set V and edge set E' := {(z,y) € E : k(z,y) = 0}. Since X cy p(z,y) = 1 and
since V' is finite, we conclude that for any vertex x € V there is at least one outgoing
edge (x,y) € E'. Note that it could be (z,x) € E'.

Observe that, if w satisfies (2.4.4), then w(z) < w(y) if (y,z) € E' and w(z) <
w(y) if (y,z) € E\ E' : along the edges of E'\ E' the solution w strictly decreases
and along the edges of E' decreases.

Definition 2.4.10. We consider the following partition of V :
V = UierCi Ujes {5},

where C; is a strongly connected component of G" with at least 2 points and {x;} is
a strongly connected component of G' with exactly 1 point. Moreover, we partitioned
the set I as I = AL B where i € A if and only if C; has no outgoing edges. We call
the strongly connected component with more than two point a large component. The
set of large components of G' is {C;,i € I}.

Remark 2.4.11. One can easily deduce that A is always non empty from the fact
that every vertex of G' has at least one outgoing edge.

Theorem 2.4.12. [Characterization of the set of 0] Let w be a canonical solution of
([2.4.4), denote U := {z € V,w(z) = 0} the mazimal set of vertex where w vanished.
Let A C A, B’ C B such that for alli € A’UB', C;NU # 0, where the set A, B, C;
are defined as in Definition]2.4.10. Denote C, := UieaupC; and Cy = Uiea C;.
Then

U= U'yOECo,'nyCf Y. (2.4.13)
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proof. We prove at first U D U, ec,~sec; 7-- Let z € C; NU. Since w is constant
on Cj, for all y € C;, w(y) = w(z) = 0. It follows that C, N Cy C U. As we
mentioned in definition2.4.9, solution w decreases and along the edges of E’. Thus
for all 2 € Uy, cc,~,ec;7, w(z) = 0.

Now we turn to prove U C UypeCoyrec; V-

Let x € U. Since w is a solution of , there exists y such that w(z) =
w(y) + k(y, x). It follows that y € U and k(y,x) = 0. It means that for all z € U
there exists y € U such that (y,z) € E’. By iterating this process, since the graph
is finite, one can find a connected component C; C U and a path +/ such that
Y, € C; C Oy and 7} = .

On the other hand, consider the a path 4" beginning with z, following the edges
of F and ending up in a connected component without out going edges C;, where
i € A'. By Remark2.4.9] for any y € 7" w(y) > w(x) = 0. Considering the fact that
w is a canonical solution, one deduce that v/ € U. Now consider the path v U~",
it is a path containing x, beginning with v, = v, € C, and 7y = 7} € C;. As a
consequence, it holds

U C Uy,ecomsecy -

The conclusion follows. O]

Proposition 2.4.14. Take A’ C A, B’ C B. Consider C, := UjcaupC; and Cy :=
UsearC;. Define the set U C V' as following :

U:= UyoeCosyrec V-
Then the function D(U,.) is a canonical solution of (2.4.4).

proof. First we shaw prove that holds for all z € U.

Aware of the fact that D(U,z) = 0 for all z € U, it is enough to prove that for
all x € U, there exists y € U such that k(y,x) = 0, or equivalently, (y,z) € E'.
Assume that x € C,, there exists i € A’ U B’ such that = € C;. Since C} is a strongly
connected component which contains at least 2 points, thus there exists y € C; C U
such that (y,z) € E'.

Now assume that x € U\ C,, then by definition of the set U, there exists a path
contains x and of the form (2, € C,, 21, ..., Zi, Zig1, ..o, 2n € Cf) With 2,41 = 2,70 > 0.
One deduce that z; € U and (z;,z) € E'.

Now we turn to the case when x € V \ U. On one hand, for all y such that
k(y,z) € E, it holds

D(U i — k(e) + k(
(U, z) + k(y, z) %EHUHVI} y; )+ k(y, 2)
> mi k(e) = D(U, x).
%gggfl:xz (e) = D(U, x)

ecy
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On the other hand, assume that D(U,z) = 3., k(e), where v is a path from U to
x in G. Let us write v = (29 € U, z1,...,2, = x) with n > 1. Denote =, the path
20 €U, z1,...,2,-1). Then it holds

D(U, zn—1) + k(zn—1,2) < > k(e) + k(zp21) = D(U, z).
eem1
Combing the last two inequalities, the conclusion holds. [

Remark 2.4.15. According to (2.4.8]), one deduce the following fact. Let w be a

solution and U be the mazimal set where w is vanished. Then w < D(U,.).

Proposition 2.4.16. System has a unique canonic solution if and only if
|A| =1 and |B| = 0. More precisely, system has a unique canonic solution
if and only if the graph G’ has exactly one connected component C' ; that component
does not have outgoing edges; and the solution is D(C,.).

proof. We assume at first that |A] = 1 and |B| = 0. Due to Proposition2.4.14]
D(C,.) is a canonical solution. Let w be a canonical solution, it is enough to prove
that w = D(C.). TheoremP.4.12] ensures that C is the maximum set where w is
vanished. By Remark2.4.15, one has w < D(C,.). On the other hand, given z €
V'\ C, one can construct a path (g, z1,...,2;,...) with 2o = x, w(z;) = w(xi1) +
k(xiy1, ;). Since V is finite, there exists i # k such that z; = x. Thus (zy,...,xy)
is a circle in G’ and we deduce that z; € C. It follows that

w(r) = w(w;) + Zi k()1 25)

j—O

Now suppose that the solution is unique. Let C be a strongly connected
component without outgoing edges of G’ and define U; as in Proposition2.4.14] by
taking C, = Cy = C. It is easy to see that U; = C. Thus D(C,.) is a canonical
solution. Now consider U, as Proposition2.4.14] by taking C, = Cf = Ue;C; the
union of all connected components. By uniqueness of the canonical solution, one
has D(C,.) = D(Us,.). Otherwise, since C' does not have outgoing edges of G', for
allz € V\C, D(C,z) > 0. One deduce that Uy = C and the conclusion follows. [

Theorem 2.4.17. Define I as in definition{2.4.10} and suppose that k satisfies As-
sumption{d. Let Sy be the solution set of the following system

Vi€ I, u(i) < u(j) + D(j,1), minu = 0. (2.4.18)

Where the function D is defined as D(j,1) := D(C;,C;) foralli,je 1.
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Let S be the canonical solution set of system(2.4.4)). Then there is a bijection
p: 81— S defined as following. For u € Sy,

p()(x) = min{u(i) + D(C;, )},
and for w € S, let x; € C;,
P (w)(0) = w(@).

proof. It is easy to see that ¢ is well define. Meanwhile, since w is constant on
strongly connected component C; for all ¢ € I, one can this constant by w(z;),
where z; € C;. Then the application ¢ : w € S — ¥(w),¥(w)(i) := w(x;) is well
define. Now we prove the theorem by 3 steps following :

(1) Yu € Sy, 0(u) € S.

(17)Vw € 5,9 (w) € 5.

(7i1) p o1 and 1 o ¢ are identity mapping on S and S respectively.

(1) : Given u € S;. It is easy to see min¢(u) = 0 from the fact that minu = 0.
Given = € V, For all y such that (y,z) € E, there exists j € I such that the
following holds :

e(u)(y) +k(y. ) = u(j)+ D(Cj,y) +k(y,z) =2 u(j)+D(Cj, z) = p(u)(z). (2.4.19)
One the other hand, there exists ¢ € I such that p(u)(z) = u(i) + D(C;,x). If
x € C, then one can find y € C; such that (y,x) € E’, and it holds
p(u)(z) = uli) = p(u)(y) = e(u)(y) + k(y, z).
Otherwise, if ¢ C;, there is y such that (y,z) € E and
We deduce that
o)) = (i) + D(Cy) + k(y,2) > p(w) ) + k(g ). (2.4.20)

Together with (2.4.19), we conclude that ¢(u)(z) = minp(u)(y) + k(y,z) ,
min ¢(u) = 0 and (i) follows.

(77) : Now take any w € S, according to Proposition [2.4.14, there exists i € [
such that for all z € C;, w(z) = 0. It follows that min ¢ (w) = ¥(w)(i) = 0. On the
other hand, for all z; € C;,x; € Cj,1,j € I, w(z;) < w(xj) + D(z;,x;). We deduce
that

P(w)(@) < Yw)(j) + D(C;, Cy),
and (ii) follows.
(7i1) : For any u € S; and any i € I, it holds for all z; € C;

o p(u)(i) = (u)(x;) = ul@).
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On the other hand, for any w € S, any x € V, it holds
0 0 ¥(w)(x) = min v(w)(i) + D(C; 2).
It is enough to prove that
w(z) = r?el[n Y(w) (i) + D(C;, ). (2.4.21)
Firstly, given ¢ € I, take y € C}, one deduce that

P(w)(i) + D(C, ) = w(y) + D(y, x) > w(x). (2.4.22)

Now we argue as in Proposition If there exists ¢ such that x € Cj, it is easy to see
that holds. Otherwise, assume that given = € V' \ U;C}, one can construct
a path (zo,21,...,2;,...) with 2y = z, w(z;) = w(zj41) + k(xj11, ;). Since V' is
finite, there exists j # [ such that x; = ;. Thus (z, ..., 2;) is a circle in G’ and this
circle is a subgraph of a strongly connected component Cj, i € I. It follows that
J
w(z) = w(z;) + > k(Te1,x5) = w(zy) + D(Ci, x) = P(w)(i) + D(C;, z).

s=1

Together with (2.4.22)), one deduce that (2.4.21)) holds. Thus one has
pod(w)(w) =miny(w)(@) + D(C ) = w(z)

for all z € V and all w € S. The proof is completed.

Extreme solutions

As we can see in the latter theorem, one can determine the solution of system

(2.4.4) by solving the system ([2.4.18]). In system ([2.4.18)), the function u is defined

on a space of || points. If we forget the normalizing constraint min u = 0, then each
constraints of defines a half-space of RI/l. Here we identify a function u on
I with a vector on Rl as @ = (u(21), yu(zyy)) € RIEL Thus, the solution set is
intersection of all those half-space, which gives a convex set S. of RIl. In order to
describe a convex set, it is enough to determine all the extreme points. Recall that
an extreme of a convex set on R" is defined as following.

Definition 2.4.23. Let C' C R" convex. u € C' is an extreme point if and only if
for all uy,uy € C, X € (0,1),

U= Nl +(1-Nup =T =u] =u.
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Observing the fact that The convex S, is invariant from translation by vector
cl, one should define the extreme point of on the sub space 1t. Denote P the
orthogonal projection from Rl onto 1+, where P : @ — o — SV} u(x;) We define
Extreme point of solution set S. as following :

Definition 2.4.24 (Extreme solution). One says that U € S, is an extreme point of
S, if and only ifP(ﬁ) is an extreme point of P(S.). It means that for all ul, us € 8.,
A e (0,1),

P(W) = AP(u}) + (1 = N P(u3) = P(W) = P(u}) = P(u3).
One says that u is an extreme solution of S, Zf7 s an extreme point of S..
Remark 2.4.25. One can always take A = 1/2 in the latter definition.

Theorem 2.4.26 (Characterisation of extreme solution). Given u € S.. Consider
the reduce directed graph corresponding to u, defined as G, (I, E,), with (i,j) € E,
if and only if u(j) = u(i) + D(i, j). Then u is an extreme solution if and only if G,
is weakly connected. Where weakly connected stands for the correspond non directed
graph is connected.

In order to prove the Theorem, we need the following lemma :

Lemma 2.4.27. Assume that u,v € S, satisfy E, C FE,, then for all weakly con-
nected component C' € G, there ezists ¢ € R, such that for alli € C, u(i) = v(i)+ec.
In particular, if G, is weakly connected, then there exists ¢ € R such that uw = v +c,

and G, = G,.

proof of lemmd2.4.27. Let i € I, for all j € I weakly connected to i, there exists a
(general) path ~ := (iy,...,4,) such that iy = 7,7, = jand forall 1 <k < n—1,
E, contains (ig,ix+1) or (igs1, k). Thus it holds

u(j) = u(i) + Z; D (i, ips1) — Zﬁ[)(z’kﬂ,z'k), (2.4.28)

where A" = {k, (iy,ix41) € E,} and A~ := {k, (ixs1,ix) € E,}. Since E, € E,,
(2.4.28)) holds for v as well. Now set ¢ = u(i) — v(7), one can deduce that for all j
connected to i, v(j) — u(j) = v(i) — u(i) = ¢. The lemma follows. O

proof of theorem. Necessary condition :

Suppose that v € S. and G, is weakly connected. Assume that ui,us € S,
satisfy u = (u1 + u2)/2. In order to prove that u is an extreme solution, according
to Lemma2.4.27, it is enough to show that G, = G,, = G,, or equivalently, since
G, is connected, it is enough to show that F, C E,, N E,,.

If (,j) € E,, then it holds

u(§) + us(§) = 2u(j) = 2u(i) + 2D(i, ) = w1 (i) + up(i) + 2D, §)  (2.4.29)
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Combining with the fact that u, (j) < uy(7)+
uy,us € S,), one deduces that ui(j) = us(7)
As a consequence, (i,j) € E,, N E,,. Thus E,

Sufficient condition :

We will prove it by contradiction : Assume that u is an extreme solution and
there exists I; C I such that I, := I\ [; # 0 and I, I, are disconnected. For
all i € Iy and j € I, (4,5),(j,%) € E., it holds that u(j) < wu(i) + D(i,j) and
u(i) < u(j) + D(j,4). Denote ;; = min{u(i) + D(i, j) — u(j),u(j) + D(j, 1) — u(i)}.
One deduces that ¢;; > 0 for all i € I;,5 € I,. Let ¢ = min;; €;;>0, define two
function uq, us on I as following :

(i) = u(7) Viel
TV re Viel

( ~)andu2( ) < ug(i)+ D( )(since
+ D(i, )anduQ() us (i) + D(i, 7).
C B, NE,,.

and

U(l) —ec Vi€ IQ

It is easy to check that uy,us satisfy the system (2.4.18)) and v = (u; + uz)/2, but
P(u) # P(uy). This is a contradiction with the fact that u is an extreme solution. [

(i) = {u(z') viel



54

CHAPITRE 2. INFIMUM CONVOLUTION OPERATORS



Chapitre 3

Functional inequalities in discrete
space

Abstract

In this chapter, we are interested in functional inequalities in general space. We
will assume that the space (X, d) is a polish space, such that closed balls are com-
pact, the goal is to deal with functional inequalities in a discrete space or a non
geodesic space. We will mainly focus on Log-Sob inequality, transport inequalities
and Poincaré inequality. Those inequalities are essential tools in the study of con-
centration of measure, in the estimation of the relaxation time of various ergodic
systems. We refer the readers to to [5],[64] for a more general introduction and
applications of functional inequalities.

95
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3.1 Introduction

Firstly, we will recall some classical results in the continuous settings. In order
to avoid technical assumptions and proofs, we assume that the space is R™. Denote
P(R™) the set of all probability measure of R", in this case, we consider the distance
d is the Euclidean norm. Given u,v € P(R"), one can define the related entropy,
the Fisher information and the optimal transportation cost between them, each of
those quantities can somehow measure the "differences" between p and v.

Definition 3.1.1. (Entropy) Let f be a real valued function defined on R", the
entropy of f with respect to u is defined as :

Ent, () = [ flog fdu— ( [ fap)tos ([ fan).

If f is a density function of v with respect to u, one can define the related entropy
of v with respect to p :

H(v|p) = / <log ZZ) dv = Ent,(f),

if v is not absolutely continuous with respect to p, then H(v|p) = oo.

Definition 3.1.2. (Fisher information) Let f be a positive function defined on X,
assume that f is differentiable almost everywhere, the fisher information of f with

respect to p s ,
z.(0) = [ (9y/fPdn = [0,

If f is a density function of v with respect to . one says that the Fisher information
of v with respect to p is

Z(v|p) = Zu(f)-
Here |.| is the Euclidean norm. In more general case, one could also consider

more general Dirichlet forms than |V f]?.

Definition 3.1.3. (Transport cost, Wasserstain distance) Let 6 : Rt — R* with
0(0) = 0, be a measurable function referred to as the cost function. Then, the
usual optimal transport cost, in the sense of Kantorovich, between two probability
measures p and v on R™ is defined by

To(v, ) := inf [[ 6(d(a,y)) w(dady) (3.1.4)
where the infimum runs over the set of couplings m between p and v, i.e., probability
measures on R™ x R™ such that w(dx x R™) = p(dzx) and m(R" x dy) = v(dy).

When the cost function 6 is x — 2P, p > 1, the optimal transport cost is
correspond to the power p of LP-Wasserstain distance. Namely, we have
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Definition 3.1.5 (LP-Kantorovich-Wasserstein distances). Let p > 1. The LP-
Wasserstein distance W, between two probability measures pn and v on a metric
space (X,d) is defined as

Waln, v) = <ir#f /d(%y)pﬂ(dxdy))l/p

where the infimum runs over all couplings ™ of . and v.

Recall that a probability measure 1 on R™ satisfies a Poincaé (or spectral gap)
inequality P(c) if there exists a constant ¢ > 0 such that for every smooth function
f R — R, u satisfies

Var,(f) < ¢Z,(f?).

The variance is defined by

Var,(f) ::/ﬁdﬂ— (/fdu)2.

We say that p satisfies the logarithmic Sobolev inequality LS(c) if there exists
a constant ¢ > 0 such that for all smooth positive valued function f one has

Ent,(f) < ¢Zu(f),
which is equivalence to say that for all probability measure v, it holds
H(v|) < cZ(v]p).

We say that p satisfies transport-entropy inequality Ty(c) if there exists ¢ > 0
such that for all v € P(R), it holds

To(v, 1) < cH(v|p).

We say that p satisfies transport-information inequality Tyl(c) if there exists
¢ > 0 such that for all v € P(R), it holds

To(v, 1) < cZ(v|p).

When the cost function 6 is quadratic, say = — 22, we denote Ty and TsI for
the transport-entropy inequality and transport information inequality. Ty is also
referred to Talagrand inequality, since it was introduced by Talagrand in [98], 1996.
Assume that p satisfies one of those inequalities : Ty, Tsl or LS, we can deduce
that the measure p satisfies a Gaussian concentration : there exists a > 0, for all f
1 — Lip, it holds for all ¢t > 0.

p(f > /fd,u—l—t) <e
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Under an assumption of Poincaré inequality P, we deduce that the reference measure
1 satisfies an exponential concentration : there exists a > 0, for all f 1 — Lip, it
holds for all ¢ > 0.

H(f?/fdu—i—t) <e ™,

One can easily see that the concentration property deduced by P is weaker than
which deduced by Ts,LS and Tsl. In fact, up to some explicit constant, the following
implication chain holds

LS = Tel = Ty = P. (3.1.6)

The implication Ty = P followed from a simple linearization argument. The im-
plication LS = Ty was obtained by Otto and Villani in [87], 2000, sometimes also
called Otto-Villani’s theorem. The proof of this theorem was recovered by Bobkov,
Gentil and Ledoux [I1] with a different method, via the Hopf-Lax formula and
Hamilton-Jacobi equation. Using a similar argument, Guillin, Léonard and Wu [53]
proved the implication Tsl = Ts. Later, Gozlan, Roberto and Samsons[48] ; Ambro-
sio, Gigli and Savaré [3] generalized independently the argument of [I1] in a general
geodesic space, and recovered the implication chain.

In this chapter, we will discuss discrete version of those functional inequalities,
and establish a similar implication chain.

3.2 Weak transport inequalities in discrete set-
ting

Space. Let (X, d) stand for a polish space (i.e. complete and separable), such
that closed balls are compact. Denote P(X) for the set of all probability measure
on X.

For example, the space can be a graph : G = (V| E), which denotes a (simple)
connected graph with vertex set V' and edge set E (given (z,y) € E, we may write
x ~ ), we assume also that all vertices have finite degree. In this case, the space is
the vertex set V' equipped with the graph distance d.

We are hoping to establish the implication chain in a discrete space. How-
ever, the Talagrand inequality almost never holds true. More precisely, when the
support of p is disconnected, Ts(¢) never holds, for any ¢ > 0. To our knowledge,
this was first proved in [47] in graph settings. We give here a different proof, as a
consequence of a more general result :

Lemma 3.2.1. Let (X,d) be a metric space and p a probability measure defined on
X. Assume that there exist C1,Cy C X such that

(i) infyecy yeo, d(x,y) >0,

(1) supp(p) C C1 U Cy,

(7i1) p(Cy) > 0, u(Cy) > 0.

Then 1 does not satisfies To(c) for any ¢ > 0.
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proof. For h < min{u(Ch), u(Cs)}, define
p(dr)(1+ -2y, 2 ey
dx) = (1)
n(d) { p(dx)(1 — M(ZQ)), x € Cy
Let d := inf,ec, yeo, d(z,y) > 0. Then we have Wh(u, v)? > d?h, and the entropy is
(u(C1) 4 h)log(1 + h/p(Ch)) + (u(Ca) — h)log(1 — h/pu(Cy)).

When & goes to 0, the entropy is O(h?). The conclusion follows since W3 have order
O(h). O

Thus, in the case that the space is a simple graph, then all points are isolated.
Then 75 holds if and only if the reference measure p is a Dirac mass, which is not
interesting.

To recover a discrete version of T5, we therefore have to redefine the transport
cost. Erbar and Maas recovered some of those functional inequality results with the
notion of entropic Ricci curvature on graphs, and we refer the reader to [32, [70]
for more details. Another way to deal with it is to take the weak transport cost
introduced by Marton [76] :

Definition 3.2.2. Let u,v be two probabilities measures on X and 6 be a positive
cost function. Define

Tavhw = ot {[0( [ d@.wp(ay) nlar)}.

Where I1(p, v) is the set of all couplings ™ whose first marginal is p and second
marginal is v, p, is the probability kernel such that w(dxdy) = p,(dy)u(dz). Using
probabilistic notations, on has
To(vlp) = inf E[f(E(dX,Y)]X))].
~u,Y ~v
Without the conditional expectation, we reduce to the classical transportation
cost :

Towln) = _inf  E[0(d(X,Y))].

XY~y
Note that for a quadratic cost, the weak transport cost could be also seen as a
weak Wasserstein-like distance. In order to agree with the notations of Wassertein
distance, we note Wa(v|u)? := T5(v|1). However, it is not a distance, since it is not
symmetric. Note that by Jensen’s inequality, it holds

Wi < Wa(v]p) < Wa(p,v).

In [50], Gozlan and al. studied this weak transport cost and establish a counter
part of Kantorovich duality ; using the infimum-operator ) we studied in the first

chapter :
= s { oo o i)
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Theorem 3.2.3 (Gozlan-Roberto-Samson-Tetali). Adapting the settings of defini-

tions before, it holds
To(v|p) = sup {/@es@du - /godu}.
¢

They also defined weak-transport entropy inequality and established a discrete
version of criteria of Bobkov and Gotze :

Definition 3.2.4. Adapting the settings of definitions before, we say that p satisfies
(i) the weak transport-entropy inequality Ty (c) if for all probability measures v, we
have

To(v|p)® < cH(v|p);

(ii) the weak transport-entropy inequality Tg_(c) if for all probability measures v, we
have

To(ulv)? < cH(v|p);

(iii)the weak transport-entropy inequality T@(Cl,CQ) if for all probability measures
1, Vo, we have B
To(vilve) < erH(vi|p) + caH (v2|p).

Theorem 3.2.5 (Gozlan-Roberto-Samson-Tetali). Inequality T3 (c) holds for prob-
ability measure p if and only if for all p, it holds

o) (o)) <1

Inequality rI“e_(c) holds if and only if for all @, it holds

( / exp (QW) du> (exp / godu)

Inequality Tg(cl, c2) holds if and only if for all v, it holds

(Jon (22) ) (f o 2} <1

We introduce now the notion of gradient. A usual notion of gradient is

)~ S
d(z,y)
However, when z is an isolated point, this is not clear. In the case that there are

few isolated points, one can set 0 by convention if z is isolated, see for example
[47]. When the space is a set of isolated points, such as the graph settings, a set of

|V f|(z) = lim sup
y—x
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isolated points equipped with graph structure and graph distance, one can consider
the gradient length |V f| (see [17]) :

[V f(2)] = sup[f(y) — f(z)]-,

y~zx

or something defined by I' calculus which we will introduce in the next chapter.

Now let (X, d) be a complete, separable metric space such that balls are compact.
We define the (length of the) gradient as

V1) o= sup LS

yeX (IE, y)

where [a]_ = max(0,—a) is the negative part of a € R (by convention 0/0 = 0).
The main reason for this gradient is its connection with the infimum-convolution
operator Q; and the related Hamilton-Jacobi equation we described in Chapter 2.
We observe that, this gradient length |’VV f|(x) is usually larger than the both two
notions of gradient |V f|(x) we described before. In R™ equipped with the usual

Euclidean distance, if f is a smooth convex function, |V f| coincides with the usual
length of the gradient |V f|(z) = />, 0;f?(x). Thus, the functional inequalities

involving V are often comparable to those who involving other gradient, we will
analyse the graph case in Chapter 4.

Unlike the usual notions of gradient, this special gradient is a global notion.
Now we define the modified log sobolev inequalities and the modified Poincaré
inequality.

Definition 3.2.6. One says that p € P(X) satisfies the Poincaré inequality, re-
spectively the modified log-Sobolev inequality[l] of type I and type II, respectively the
weak transport-entropy inequality of type I and type II, if there exists a constant
C € (0,00) such that for all f: X — R bounded it holds

Var,(f) < C/ IV f|? dp (Poincaré Inequality), (3.2.7)

respectively

Entu(ef) < 0/9* (]’va\) el du  (Modified log-Sob Ineq. of type I), (3.2.8)

Entu(ef) < C/H* (]’VV(—f)D el du  (Modified log-Sob Ineq. of type II). (3.2.9)

1. We observe that the terminology here is not optimal since there already exist, in the lit-
erature, many different inequalities called modified log-Sobolev inequality that have a priori no
relation between them, and no relation with our definition.
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Assume that the cost function is quadratic : 0 :  — 2%. The log-Sobolev-type
inequality is implied by the usual Gross’ inequality [52] in the continuous
setting (since |V f| > |V f]). In discrete, there exist a lot of different versions of
the log-Sobolev inequality — that are all equivalent in the continuous, thanks to
the chain rule formula — each of them having some nice property (connection to
the decay to equilibrium of Markov processes, concentration phenomenon etc.). We
refer the reader to the paper by Bobkov and Tetali [17] for an introduction to many
of these inequalities and related properties. In particular, in [I7], the log-Sobolev
type inequality is studied, with some local gradient in place of V. As we shall
prove below, the usual log-Sobolev inequality in discrete, with transitions given by
a Markovian matrix, implies . In turn, since such an inequality is very well
studied in many situations (see e.g. the monographs [41, 5] and [72] 55] for results on
general graphs and examples coming from physics) this provides a lot of examples
of non trivial measures (on graphs) that satisfy (3.2.8).

3.2.1 Connection with some classical inequalities, on graphs

Given a (simple connected) graph G = (V, E), recall that K = (K(z,9))syev
is a matrix with positive entries if K(z,y) > 0 for all z,y € V, and that it is a
Markovian matrix if in addition > ¢y K(x,y) = 1 for all # € V. Then, the couple
(1, K) satisfies the (say) classical modified log-Sobolev inequality if there exists a
constant C' € (0, 00) such that for all f: V' — R bounded it holds

Ent,(e)) < C Y (/0 — /@) (f(y) - f(@))(2)K (2, y). (3.2.10)

z,yeV

The latter is known to be a consequence of Gross’ Inequality that asserts that

Ent,(f) < C" > (fly) — f(z))’pwz)K(z,y) Vf:V — R bounded. (3.2.11)

z,yeV

More precisely Gross’ Inequality (3.2.11]) with constant C” implies the classical mod-
ified log-Sobolev inequality (3.2.10) with constant C' < C’/4, see [17, Theorem 3.6].

Proposition 3.2.12. Let p be a probability measure on a (simple connected) graph
G = (V, E) and K be a matriz with positive entries. Assume that there exists a con-
stant L such that Y ey d*(z,y)K (x,y) < L for all x € V and that for all z,y € V,
p(x)K(z,y) = p(y)K(y, x). Finally, assume that (u, K) satisfies the classical mod-
ified log-Sobolev inequality with constant C, respectively Gross’ Inequality

(3.2.11)) with constant C'. Then, i satisfies the modified log-Sobolev inequality (3.2.8))
with a(z) = o*(x) = 2%/2 and constant 4LC, respectively LC'.

Remark 3.2.13. The condition p(x)K(z,y) = p(y)K(y,x), z,y € V, is known as
the detailed balance condition in the physics literature and means that the operator

K, acting on functions, is symmetric in 1L2(u). Most commonly one deals with a
Markovian matriz with nearest neighbor jumps (meaning that K(z,y) = 0 unless
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d(xz,y) = 1), which guarantees that L = 1. In particular the hypotheses of the
proposition are very commonly used and correspond to a lot of practical situations

1)

proof. The result involving the Gross’ inequality is an immediate consequence of
the result involving the classical modified log-Sobolev inequality since the former
implies the latter with ¢’ < C/4.

Hence, we only need to show that

> (W = D) (f(y) — f@)u@)K (@, y) < 2L Y [V )e! @ p(e).

z,yeV zeV
Since (a — b)(e® — €) < (a — b)? max{e?, e}, we have

> (W =T D) (f(y) — fla))p(2) K (2, y)

z,yeV
< Y (fly) = f@)PDu@)K(z,y) + Y (f@) = f©)’e’ Y u(z) K (z,y).
AN 5

Using the detailed balance condition ensures that

Yo (fl@) = f@)eVp@)K(zy) = > (fx) = f) /P uy)K(y, )

z,yeV: z,yeV:
fw)zf(=) fw)z2f(=)

which, after a change of variable, implies that
> (e =) (f )~ @) (@)K (w,y) =2 3 (f(y) ~ (@) Op(o) K (z.y).
z,yeV z,yeV:

f(@)2f(y)

Now, we observe that

> (fy) = f(2))e" O p(@)K (2, y)

z,yeV:
F(@)2f(y)

— Z ([f(y) B f(l’)]) ef(x)pJ(:B)K(ﬁ, y)d(x7y)2

z,yeV: d(x7 y)
F(@)2f(v)
<Y VAP @) () 3 K(x,y)d(z,y)®
zeV yev

which leads to the desired result since Yoy K(z,y)d(x,y)* < L. The proof is
complete. O

The next two section will show that the modified log Sobolev inequalities are
equivalence to some hypercontractivity property, which imply some Talagrand type
transport entropy inequality. Then we will show that the Poincaré inequality is
equivalence to some kind of modified log-sob inequality and transport entropy in-
equality with certain cost function. Before going into this technical proof, we would
need some properties of this special gradient length V.
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3.2.2 Properties of the gradient V

In this section we collect some useful facts on the gradient V. Our first result is
some sort of chain rule formula for V.

Proposition 3.2.14. Let f: X — R and G: f(X) — R.

(i) If G is non-decreasing then |VG o f|(z) < |V f|(2)|VG]| (f(z)), z € X.

(ii) If G is non-increasing then |VG o f|(z) < |[V(=)|(2)|[VG| (f(z)), z € X.
Here, |VG|(u) == sup,cp [GO=CW= " e R, with | - | being the absolute value.

[v—ul

proof. Fix x € X and assume that G is non-decreasing. Let y € X be such that

fl@) > fy) (if {y € X : f(z) > f(y)} = 0 then [VG o f|(x) = |V f|(x) = 0 and
there is nothing to prove). Since G is non-decreasing G(f(z)) > G(f(y)) so that

G(f(z) =G (fy) _ flz) = [y G(f(z) = G (fy))
d(z,y) S d(zy) fl@) = f(y)
Taking the supremum over all y such that f(z) > f(y) leads to the desired conclusion
of Item (3).
The proof of Item (i7) is similar. Let y € X be such that f(y) > f(z), then
G(f(y)) < G(f(x)) (since G is non-increasing) so that

G(f(x) -G(fly) _ (=) - (=N C(f() -G ()
d(z,y) d(z,y) |f(y) — f(z)]
< |V(=H)I(@)| VG| (f(z)).

The result follows by taking the supremum over all y € X such that f(y) > f(z). O

< V(@) VG| (f(x)).

Remark 3.2.15. Observe that IV(CH(x) = CIVfl(x) for C > 0, while
IV(Cl(x) = —C|V(=f)l(z) for C < 0. Because of the negative part entering
in its definition, in general |V (—f)| # |V f].

3.3 Hypercontractivity

In this section we follow the work by Bobkov, Gentil and Ledoux [11] to prove a
result analogous to the celebrated Otto and Villani Theorem [87]. Namely we shall
prove that some log-Sobolev type inequality is equivalent to an hypercontractivity
property of the semi-group Q,, which in turn, by a duality argument due to Gozlan
et al. [50], implies some Talagrand type transport-entropy inequality. To state this
result one needs to introduce some additional notations.

Consider the usual g-norm of a function g on X defined by ||gl, = (J |g|? du)"4,
¢ € R, with, when this makes sense, ||g|lo := lim,—0 ||g]|; = exp{[loggdu}, and
when g > 0.
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Theorem 3.3.1. Let i be a probability measure on X and C' > 0. Then
(1) If for all bounded measurable function f: X — R,

Ent,(e/) < C / IV f[2ef dp, (3.3.2)
then for every p = 0, every t > 0 and every bounded measurable function f,
@]z < lle I, (3.3.3)

Conversely, if holds for some p > 0 and for all t > 0, then (3.3.2)
holds.

(12) If for all bounded measurable function f: X — R,
Ent,(ef) < C / V(=) du, (3.3.4)

then ) holds for every p < 0, every t € [0, —pC/2] and every bounded
measumble function f. Conversely, if (-) holds for some p < 0 for all

t €10,—pC/2), then (3.3.4) holds.

Theorem 3.3.5. Let i be a probability measure on X and C > 0. Then the following
conditions are equivalent

(1) p satisfies the modified log-sob inequality (3.3.2) with constant Cy > 0.
(i1) There exists Cy > 0 for all v probability measure on X,

To(ulv) < CoH (v|p). (3.3.6)

where H(v|p) is the relative entropy of v with respect to p, i.e. H(v|n) = Ent,(g)
if v < pand g = dv/du, and H(v|pw) = 400 otherwise. Moreover, (i) = (it) with

Inequality is related to the concentration phenomenon and was studied
by the authors listed above (Dembo, Gozlan, Marton, Roberto, Samson, Tetali,
Wintenberger). However, proving directly for non-trivial measures is not an
easy task and, to the best of our knowledge, there exist very few examples of mea-
sures satisfying . In fact, Theore above, together with the important
literature on the log-Sobolev inequality provide at once new examples.

That implies (3.3.6)(with |V] in place of V) is known, in the continuous
setting, as Otto-Villani’s Theorem [87]. Such a theorem was proved using Otto
calculus in the original paper [87] in the Riemannian setting. Soon after, Bobkov,
Gentil and Ledoux [I1] gave an alternative proof based on Hamilton-Jacobi equation.
Then, it was generalized to compact measured geodesic spaces by Lott and Villani
[68, 69] (see also [§]), and to general metric spaces by Gozlan [42], see also Gozlan,
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Roberto and Samson [47] and for an approach based on the Hamilton-Jacobi Semi-
group. Later on, the original ingredients of Otto-Villani’s paper were successfully
adapted to the general metric space framework by Gigli and Ledoux [40]. Our proof
follows the Hamilton-Jacobi approach of [I1]. We point out that implies
(3-3.2) (with |V] in place of fVV) is not true in the continuous setting.

Proof of Theorem|[3.53.1. We shall show that the modified log-Sobolev inequality

(3.3.2)) implies the hypercontractivity property (3.3.3)) for positive p and the modified
log-Sobolev inequality (3.3.4)) implies the hypercontractivity property (3.3.3)) for

negative p at the same time. To that purpose, fix p € R and, following [I1], define

1 ~
F(t) = mlog (/ M HQs d,u) : t>0

with k(t) := p+ (t/2C). By Theorem [2.2.19] F' is differentiable at every point ¢ > 0
when p > 0 and every t € (0, —pC'/2) when p < 0. For such points, it holds

/ . k/<t) 1 k(t)étf @ k‘(t)@tfg 2
B0 = 507 T o0at ap (E“t“ (e >+ o) [ 0 St dn ).

According to Theorem [2.3.9, we have

Ent,, (e’“(t)@tf ) + % / k0@ I Q fdu

< Ent, <ek(t)§tf>

= Ent, (ek(t)étf)

Qk, [ vQupeas

%, /!v ROIQuf]|| FO% dp
where the last equality follows from Remark [3.2.15] Now we have two cases to deal
with : (a) If p > 0 and p satisfies (3.3.2), then |k(¢)| = k(t). Hence, applying the
modified log-Sobolev inequality leads to F'(t) < 0. (b) If p < 0 and p satisfies
3.3.4), then |k(t)] = —k(t). Hence applying the modified log-Sobolev inequality
3.3.4)) leads also to F'(t) < 0. In both cases F'(t) < 0 implies F(t) < F(0) which
amounts to (3.3.3]).

Conversely, suppose that holds for every ¢ > 0 when p > 0 (respectively
every t € [0, —pC/2) when p < 0) . Then, in the limit, implies that F(0) < 0
and thus (recall that k'(t) = 1/(2C) > 0)

Ent. (E@r) o KO [ ka9 du <0
nt, (e +k,(0)/€ Qtf’to <

where we set Qo f := limy_,o Q: f. By Theorem , since a(zr) = 22/2, Qof = f so
that the latter is equivalent to

Enty, () +20°C [ e/ 5 ot 0 Qo dt <
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Now, according to Theorem , gt f(@)|t=0 = —f]Vf| (x), z € X so that
Ent, () = € [ e[V (|l f) du < 0.

This precisely amounts to proving (3.3.2) (respectively (3.3.4))) when p > 0 (resp.
p < 0). The proof of Theorem is complete. O

proof of Theorem3.3.5. (i) = (ii), recall the following generalization of Bobkov-
Gotze dual characterization borrowed from [50, Theorem 5.5] :
Inequality (3.3.6)) holds if and only if for all bounded continuous function p: X —

R it holds 5 5
~Q < = . 3.
/exp{CQw} du\exp{c/sodu} (3.3.7)

Now, (3.3.3]) applied to p = 0 and t = 1 precisely amounts to , since by
definition ||g||o := exp{[loggdu} for g > 0. Hence the result, thanks to the dual

characterization of [50].

Now we turn to prove (ii) = (i). According to [50, Proposition 8.3|, (i7) implies
that for all A € (0,1/C%), the following inequality holds for all bounded lower semi
continuous function f :

1
Ent,(e) < m/(f — R)f)el dp.

Here in our settings, R)f(z) := infpep){/ fdp + 3 ([ d(x,.)dp)?} = Qinf(x).
According to Proposition “ 7t — Q.f is convex. Thus

R~ = Qupf =12 s 9 Qo = — 55 V1P
We deduce that

Ent,(e/) <

o U= R

1 N
<— 2eldy.
\2)\(1—>\O)/|Vf| e du

Optimizing A with A\ = % yields the result. [

Remark 3.3.8. Since |§f]2(x) < 1 for any 1-Lipschitz function, the usual Herbst
argument (see e.g. [, Chapter 7], [17]) applies and leads to the following concen-
tration result : if u satisfies the modified log-Sobolev inequality (3.2.8)), then any
1-Lipschitz function f: X — R with [ fdu = 0 satisfies p(f = h) < e /4O for
all h > 0.
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3.4 Modified Poincaré inequality

In this section, we prove that the Poincaré inequality , the transport-
entropy inequality with a quadratic-linear cost, and a modified log-sob type
inequality are equivalent. This will extend to our setting similar results known in the
continuous, see [I1]. We start with the definition of quadratic-linear cost function.

Definition 3.4.1 (Quadratic-linear cost function). A quadratic-linear cost function
al Rt = R, a,h > 0 is such that

2 gh
&Z(I): ax 2 T
2ax — ah® x > h.

The first main theorem of this section is a characterization of the Poincaré
Inequality in term of a modified log-Sobolev inequality with quadratic-linear
cost. Such a characterization is an extension of a well known result of Bobkov and
Ledoux [15].

Theorem 3.4.2. A probability measure i on X satisfies the Poincaré Inequality
3.4.3)) with constant C' if and only if p satisfies the modified log-Sobolev inequality
3.2.8)) with constant C' and cost a*. More precisely

- (3.4.3) implies (3.2.8) with C" = K(c), a = Tl(c) and h = 2cK(c) for any
¢ < 2/v/C with K(c) defined in theorem |3.4.9;

- (3.2.8) implies (3.4.3)) with C' = C".

We observe that, with respect to [15] there is a loss in the constant K (c). This
is technical. Indeed, the proof essentially follows [I5], but it cannot be extended
directly and one has to be careful in many points, for technical reasons coming from
the gradient V. We postpone the proof at the end of this section. Now we state the
second main theorem of the section.

Theorem 3.4.3. Let pu be a probability measure on X. The following propositions
are equivalent.

(i) There exists a constant Cy > 0 such that u satisfies the Poincaré inequality
(13.2.7) with constant C.

(17) There exist constants Ca,a,h > 0 such that u satisfies the weak transport-
entropy inequality (3.2.8)) with constant Cy and cost ol

More precisely,
- (i) implies (i) with Cy = aCy;
- (4) implies (i1) with Cy = K(c)/2, a = 4](1(0) and h = 2c¢K (c) for any ¢ < 2/y/C
and

K(C)—g 2+262+C Cl 2€Cm
o 2 2—6\/01 .
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Remark 3.4.4. As a direct consequence of the above theorem, we observe that the

weak transport-entropy inequality T, with cost function o(z) = % and constant
C’ implies the Poincaré inequality ([3.2.7) with constant C/2. Indeed, since a(x) =

m > aijy(z), the weak transport-entropy inequality To(C) implies T, %/2(0) and the

concluswn follows from Item (it) of Theorem .
The proof of Theorem relies on Theorem (3.4.2]
Proof of Theorem[3.4.3 - We will first prove that (i) implies (i4). Fix ¢ < 2/+/C and

set C =Ch, a ( yand b = 2¢K (c). Thanks to Theorem [3.4.2| for all f: X — R
bounded, it holds

Entu(ef) < K(e) [ () (IV /)¢’ dp.

Arguing as in the proof of Theorem with k() = 2¢/K(c), and using the fact]]
that (a)*(Au) < A?(a)*(u) as soon as u < 2ah, we obtain (details are left to the
reader) that the family of operators (exp{@t})@o, with Q defined with the cost al,
is hypercontractive which in turn guarantees that

2 ~ 2
= _Ovfpdu < [1d
/eXp{K(c)Qlf} TS eXp{K( ] f u}
for all bounded function f. The conclusion follows from the dual characterization

of [50] (that we recalled in (3.3.7))).

Next we prove that (ii) = (i). By an easy argument it is enough to prove
for all bounded Lipschitz function f on X. According to [50] (see (3.3.7))),
the transport-entropy inequality (3.2.8)), with cost (a)*, is equivalent to say that
for all continuous bounded function ¢ on & it holds

2 ~ 2
/exp {CQQM} dp < exp {/ o dM}
where @ is defined with the cost al'. Fix [ > 0, let f be a [-Lipschitz function and

set p :=tf. The latter inequality reduces to | exp {C%@ltf} du < exp {f C%tf du}.
Hence, for ¢ < (ah)/l, by Lemma [2.2.23| below, we get

/exp{t@tf}du exp{/ tfdu}

An expansion around ¢ = 0 yields that

/<1+tf+ ;tQ <C42f2 2 atQtf\t 0) (t2)> dp
1+t—/fdu+ /fd,u—i—otQ) (3.4.5)

2. For the reader convenience we observe that (a)*(x) = K(c)2? if |x| < cand (a)*(z) = +o0
otherwise.
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Therefore (comparing the coefficients of ¢?), it holds Var,(f) < —Cs [ %@t flzodps.
Applying Theorem [2.3.9) we arrive at Var,(f) < Co [ o/ (]%f’) dp, which in turn,

— ~ 2
since /" (|Vf|(a:)) =a (\Vf|(a:)) for I < ah, implies that for all ah-Lipschitz
function f, it holds

Var,(f) < a02/|%/f|2 dj.

Replacing f by A\f with A € R", we conclude that the above inequality holds for
all Lipschitz function f and thus p satisfies the Poincaré inequality with constant
aCs. This ends the proof of the theorem. O

Now we prove Theorem3.4.2|
The proof relies on the following three propositions.

Proposition 3.4.6. If i satisfies the Poincaré inequality (3.2.7) with constant C' >
0, then for all f : X — R,

— f2
Var,(fe!/?) < C/|Vf|2 <1+e4+f+4> el du.

Proposition 3.4.7. If u satisfies the Poincaré inequality (3.2.7) with constant C' >
0, then for any bounded c-Lipschitz function f on X with ¢ < 2/\/6 and [ fdu =0,

[ 12 dn < C<2+2e “f) [V 12! dp.

2 —

Proposition 3.4.8. If u satisfies the Poincaré inequality (3.2.7) with constant C' >
0, then for any bounded function f on X with ||f||lLip < ¢ and [ fdp =0, we have

/f2 d/ub < 66\/@/f267|f\ d,U,
We postpone the proof of the above propositions to prove Theorem |3.4.2]

Proof of Theorem|[3./.7. Changing f into f+constant we may assume that [ f du =
0. Since ulogu > u — 1 for all uw > 0, we have

Ent,(e) < /(fef —ef 1) du = / (/Olththdt> dj.

Let ©(t) := [ f?et/ du, t € [0,1]. By convexity, ¢ attains its maximum at either
t =0 ort = 1. By Proposition |3.4.8, and since el < el o(0) < eV>Cp(1). Thus,
for every t € [0, 1], ¢(t) < ec\/g/ogo(l). It follows that

1 1 1 . /se
Ent,,(e/) </ to(t) dt </ teV3Cp(1) dt = 566 5C/f2ef d.
0 0

Together with Proposition |3.4.7, Theorem |3.4.2] is established. O]
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Now let us prove Propositions [3.4.6] [3.4.7] and [3.4.§

Proof of Proposition[3.4.0. Let G := u +— ue"/? and observe that it is decreasing
on (—oo,—2|, increasing on (—2,00) and its minimum is G(—2) = —2e¢~!. Now,
starting from G, define an increasing function H as G when G is increasing and
as the symmetric of G with respect to y = G(—2) when G is non-increasing. More
precisely,

H(x) —ze®/? — 47! ifx < =2
x) =
ret/? if x> —2.

Observe that |H(z) + 2e7!| = xe™/? + 27!, € R. Hence, using that Var,(|g|) <
Var,,(g), it holds

Var, (fe!/?) = Var,(fef/? +2¢71) < Var,(H o f 4 2¢™') = Var,(H o f).
Now applying the Poincaré Inequality (3.2.7) and Proposition [3.2.14] we have
Var,(Ho ) < C [[V(Ho f)Fdu < C [ |VfRVH? () dp. (3.4.9)

Since H is increasing, we have

O<|/VVH](u)zsupH(u)_H(v)zsup{ ! /(vvu)H/(t)dt}gsupH’(t).

v<u u—7v v<u (U — U t<u

After some basic analysis, we have the following facts
—if u < —4, sup,., H'(t) = |(1 + u/2)e*?| since H'(t) = |(1 + t/2)e"/?| is
increasing on (—oo, —4];
— if u € [-4,0], sup,, H'(t) <1 < e?e%/?;
—if u > 0, sup,., H'(t) = |(1 + u/2)e*/?| since H' is increasing on [0, c0) and
H'(u) > H(0) = 1 > sup,, H'(t).
As a consequence, we have |[VH|2(u) < (14 u/2)? + e*) e*. Therefore

Var,(H o f) < C/y'v“f|2|€HP(f) dp < c/ﬁfy? <1+e4+f+{f> el dp.

This ends the proof of the proposition. [

Proof of Proposition[3.4.7. Set a*> = [ f2e/dy and 0> = [|Vf[>e/ du. By the
Poincaré inequality (3.2.7), for any two bounded functions g and h on X with
Jgdu =0,

(Jovsf < () (o) < (0 o) c f )

Therefore, since [ fdu =0,

(/fef/2 du>2 < C? (/ |”vvf|2du> (/|Avvef/2|2dﬂ>.
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Set G(u) = €*/2, u € R. The convexity of G guarantees that IVG| = |G'|. Thus
by Proposition (3.2.14} it holds |Ve//?|> < 1|V f|?¢/. Hence

2
(/fef/2 d,u> < iC’chbQ.

On the other hand, according to Proposition |3.4.6]|

/2 TP (14 et P\ o
Var,(fe )SC’/\Vﬂ 1+e —|—f—i—4 el du
<C’<(1+e4)b2+/|§f|2fefdu+024@2>.

By Cauchy-Schwarz inequality,

/ﬁf|2f€f < (/ |/va|2f26f du>1/2 (/ |/va|26f d:u)l/2 < cab,
so that
Var,(fe/?) < C <<b+ C2a>2 + 6462> .
Then we get that
"= (/ el d“>2 + Var, (fe//?) < iCQesz +C <b + 02“>2 Lo

Simplifying this inequality, we end up with

2
g\/5<2+26 —1—0\/5)’
2—0\/5

and the conclusion follows. O]

Proof of Proposition[3.4.8 For all u > 0 and all v € R, we have 2|v| < u+ (1/u)v?.
Hence 2|v|* < uv? + (1/u)v* and therefore,

4
b

2/|f|3du < u/f2du+ i/f‘*du. (3.4.10)
By the Poincaré inequality it holds

[rFap<c [1V1Puta) < .
so that (f f2dp)* < 2C [ f2dp.

On the other hand, set G(t) = >, t > 0. The convexity of G guarantees that for
all t > 0, |[VG|(t) = |G'|(t). Hence, according to Proposition |3.2.14} it holds

Var, (£2) = Van, (f?) < C [ [V(fP)Pdp < 4C [ £2(V1f|Pdn < 4°C [ fdn
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where in the last inequality we used that |f] is c-Lipschitz. It follows that [ f4du =
(f f2du)?+ Var,(f?) < 5¢*C [ fdu. Hence, from (3.4.10)), we obtain that for every

u > 0,
5¢2C
2 [ £ du < (u+ . ) [ 2
Minimizing over u > 0, we get
/\f\?’dp < C\/5C/f2 dp. (3.4.11)

Consider now the probability measure 7(dz) = f(x)? u(dz)/([ f*du). By Jensen’s
inequality,

[ e Wap= [ear [1Fau= e T [ 172 dp
By (13.4.11]) we conclude that

J1s1ar =L < e,

from which the result follows. O]

Proof of Theorem|[3.4.3. Changing f into f+constant we may assume that [ f du =
0. Since ulogu > u — 1 for all u > 0, we have

Ent,(e) < /(fef —el +1)du= / </01 tfzetfdt) dj.

Let ©(t) := [ f?e du, t € [0,1]. By convexity, ¢ attains its maximum at either
t =0 or t = 1. By Proposition and since e /I < ef, p(0) < e?V?Cp(1). Thus,
for every t € [0,1], p(t) < eV*/Cp(1). It follows that

1 1 1 o
Ent,,(ef) </ to(t) dt é/ teV (1) dt = 5ec 5C/f2€f dj.
0 0

Together with Proposition Theorem is established. O

3.5 Synthesis and Examples

In continuous space, we have the following relations

LS = Tsl = Ty —= T, <= P
) Y
Hypercon. Gaussian concentration

where « is a quadratic-linear cost function.
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In the discrete settings, with the gradient ’VV, up to some constants, we have
proved the relationship following :
mLS(I) < HY T, => T,<P
mLSIl) ©H =Tf= T /=P
Where mLSI(I) and mLSI(II) stand for the modified log-Sobolev inequality
of type I and type II respectively, H* and H~ stand for the two hypercontrativity
properties with respect to p positive and negative respectively. P denotes
the Poincaré inequality with the gradient V.

Next we give examples of measures satisfying log-Sobolev/Poincaré/transport-
entropy type inequalities.

Measures satisfying the log-Sobolev inequality (3.3.6) and the transport-
entropy ((3.3.6))

As already mentioned, the classical log-Sobolev inequality implies the
(say) classical modified log-Sobolev inequality which, thanks to Proposition
implies under mild assumptions the modified log-Sobolev inequality ,
which finally, thanks to Theorem [3.3.I] implies the transport-entropy inequality
. The latter is usually hard to obtain directly. The above chain of implication
applies to a lot of different situations, including highly non-trivial examples. Let us
mention random walks on the hypercube, on the symmetric group or the complete
graph (see [I7] where optimal (or almost optimal) bounds are given for (3.2.10))
the optimal bound in for the lamplighter graph can be found in [1], and
in [73] for the Ising model at high temperature, on the lattice or on trees. Many
other examples can be found in [27]... Bound on the constant in the tranport-entropy
inequality are new for all examples listed above, to the best of our knowledge.

As an illustration, consider the uniform measure p = 1/2™ on the hypercube
{0,1} associated to the Markov chain that jumps from z to anyone of its nearest
neighbors (i.e. any string z’ that differs from z in exactly one coordinate) with
equal probability (1/n). Then p satisfies Gross’ Inequality (3.2.11]) with constant
n/2 [52], the classical modified log-Sobolev inequality (3.2.10) with constant n/8
[17], and thus, by Proposition (note that L = 1), the modified log-Sobolev
inequality with constant n/4, and in turn, thanks to Theore, the
transport-entropy inequality holds with constant n/8.

In the case of the symmetric group S, consisting of n! permutation (of n el-
ements), equipped with the transposition distance (i.e. two permutations are at
distance 1 if one is the other composed with a transposition). Each permutation
has n(n — 1)/2 neighbors and the Markov chain that jumps uniformly at random
to any neighbor is reversible with respect to the uniform measure p = 1/n!. Gross’
Inequality is known to hold with a constant of order n?logn [65], while the classi-
cal modified log-Sobolev inequality holds with constant C' < n(n — 1)2/2



3.5. SYNTHESIS AND EXAMPLES 75

[I7]. Therefore, by Proposition [3.2.12| (again note that L = 1), u satisfies the mod-
ified log-Sobolev inequality (3.3.6) with constant n(n — 1)? and in turn, thanks to

Theorem [3.3.1] the transport-entropy inequality (3.3.6)) with constant n(n — 1)%/2.

Poincaré inequality

The next proposition extends a well-known result that asserts that the Poincaré
inequality holds on bounded domains. We will then give examples of measures sat-
isfying the Poincaré inequality (3.2.7) but not the one with the usual gradient.

Proposition 3.5.1. Assume that the support of the probability measure p has a
finite diameter and let D = sup, ,cqupp1d(T,y)}. Then p satisfies the Poincaré
Inequality (3.2.7) with constant at most D?/2.

proof. For all z,y € Supp(), f(x) — f(y) < d(w,y)|Vf|(z) < D|Vf|(z). Thus, for
all continuous function f on X, it holds

2

Var(f) =5 [ (@) = 1) nlde)n(dy) < 5 [ 1917 du

]

Now, on X = R consider the following probability measure u = %50 + %51. We
claim that y satisfies the Poincaré inequality (3.2.7)), but not the (classical) Poincaré
inequality with the Euclidean gradient.

Indeed, Proposition applies and leads to the Poincaré inequality
with constant at most 1/2. On the other hand, the mapping f: R > z ~ 22% —
32% 4+ 1 satisfies f(0) = 1, f(1) = 0 and f’(0) = f'(1) = 0 so that Var,(f) =
1 (f(0) — f(1)? = Yand [ fdp = 0 which proves the claim.

Let us prove now that u also satisfies the modified log-Sobolev inequality .
Given f: R — R with f(0) > f(1) (the other direction is similar), we have f(0) —
F(1) < |V£1(0) so that (£(0) — £(1))*e/© < [ |V f]?e! du. Thus, to prove that the
modified log-Sobolev inequality holds, it is enough to prove the existence of
a constant C such that

Ent,,(f) < C(f(0) = f(1))" /¥
or equivalently

f(O)ef(O) + f(l)ef(l) _ (ef(O) + ef(l)) log (M) < 2C (f(0) — f(l))2 /)

Setting u := f(0) — f(1) > 0, the latter is equivalent to prove that
e“+1

ue" — (e* + 1) log < ) < Cu’e" Yu >0

which is an easy exercise.
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Chapitre 4

Ricci curvature on graphs

Abstract

In this chapter, we study various transport-information inequalities under three
different notions of Ricci curvature in the discrete setting : the curvature-dimension
condition of Bakry and Emery [6], the exponential curvature-dimension condition of
Bauer et al. [9] and the coarse Ricci curvature of Ollivier [85]. We prove that under a
curvature-dimension condition or coarse Ricci curvature condition, an L, transport-
information inequality holds; while under an exponential curvature-dimension con-
dition, some weak-transport information inequalities hold. As an application, we es-
tablish a Bonnet-Myers theorem under the curvature-dimension condition CD(x, 00)
of Bakry and Emery [6].

7
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4.1 Introduction

In the analysis of the geometry of Riemannian manifolds, Ricci curvature plays
an important role. In particular, Ricci curvature lower bounds immediately yield
powerful functional inequalities we mentioned in the last chapter, such as the loga-
rithmic Sobolev inequality, which in turn implies transport-entropy and transport-
information inequalities.

However, the space we considered here is a graph. Let X’ be a finite (or countably
infinite) discrete space and K be an irreducible Markov kernel on X. Assume that
for any x € X', we have

> K(z,y) =1. (4.1.1)

This condition is a normalization of the time scale, enforcing that jump attempts
occur at rate 1. We also define J(z) := 1 — K(x,z) and J := sup,cy J(z). J is a
measure of the laziness of the chain, estimating how often jump attempts end with
the particle not moving. Since we assume the kernel is irreducible, 0 < J < 1.

We shall always assume there exists a reversible invariant probability measure 7,
satisfying the detailed balance relation

K(z,y)n(z) = K(y, z)n(y) Vz,y € X.

We denote by L the generator of the continuous-time Markov chain associated to
the kernel K, which is given by

Lf(x) =Y (f(y) — f(x)K(z,y).

Y

Let P, = etf be the associated semigroup, acting on functions, and P its adjoint,
acting on measures. We also define the I' operator, given by

1

P(f.9)(x) = 532 (F(y) = F@)(9(y) = 9(@) K (2, )

Y

and write I'(f) := I'(f, f).

The distance on X we shall use is the graph distance associated to the Markov
kernel. If we consider X as the set of vertices of a graph, with edges between all
pairs of vertices (x,y) such that K(z,y) > 0, d shall be the usual graph distance.
More formally, it is defined as

d(z,y) :=inf{n € N; 3z, .., x,|z0 = =, v, =y, K(x;,2;41) >0 VO < i <n—1}.

In this setting, the transport cost 7, the weak-transport cost 7 and T are well
define, as well as the related entropy H (v|m) for all probability measure v. Thus, the
definitions in last chapter of the transport entropy inequality and the weak-transport
entropy inequality are still available. In order to define the inequalities involving the
fisher information, we need to introduce the notion of fisher information in graphs.
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Definition 4.1.2. (Fisher information) Let f be a nonnegative function defined on
X. Define the Fisher information I, of f with respect to m as

() =4 [TG/Ddr =2 3 (/5 = V@)K @ y)(e).

rzecX yeX

The factor 4 in this definition comes from the analogy with the continuous setting,

where
4/|v\/}|2d7r :/|Vlogf|2fdu.

In the continuous setting, the Fisher information can be written as [ Vlog f - V fdr,
so we can define a modified Fisher information as

To(f) = /F(f, log f)dr, (4.1.3)

which corresponds to the entropy production functional of the Markov chain.
There is a third way to rewrite the Fisher information for the continuous settings
2
as [ %du, and one can also define another modified Fisher information as

Z.(f) ::/F((ff)dﬂ.

Of course, there are many other ways to re-write the Fisher information in the
continuous setting, each leading to a different definition in the discrete setting. We
only stated here the three versions we shall use in this work.

In the discrete setting, Z.(f), Z(f) and Z.(f) are not equal in general. Tt is
easy to see that Z,(f) < Z.(f) and Z.(f) < Z.(f) If f is the density function of
a probability measure v with respect to 7, since (y/f(y) — \/f(x))* < f(z) + f(y),

and since 7 is reversible, one can deduce that

L) <2 Y (F(0) + f) K (a,y)m(a) < 4.

TeEX yekX

Here we can see that in discrete settings, the Fisher information is in fact bounded
from above, which is not true in continuous settings.

Now the next question one would want to answer is how to define Ricci cur-
vature lower bounds in discrete settings. The natural approach would be to define
it as a discrete analogue of a definition valid in the continuous setting. There are
several equivalent definitions one can try to use (see [4] for those definitions in the
continuous settings and for the equivalences between them). However, in discrete
spaces, we lose the chain rule, and these definitions are no longer equivalent.

Several notions of curvature have been proposed in the last few years. Here we
shall consider three of them : the curvature-dimension condition of Bakry and Emery
[6], the exponential curvature-dimension condition of Bauer et al. [9] and the coarse
Ricci curvature of Ollivier [85]. Other notions that have been developed (and which
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we shall not discuss further here) include the entropic Ricci curvature defined by
Erbar and Maas in [32] and Mielke in [80], which is based on the Lott-Sturm-Villani
definition of curvature [69, 96], geodesic convexity along interpolations in [50] and
[66], rough curvature bounds in [19]. It is still an open problem to compare these
various notions of curvature. We refer readers to the forthcoming survey [25] for a
more general introduction.

In this chapter, we will obtain transport inequalities under the above three no-
tions of curvature conditions and give some applications.

Since we shall deal with three different types of Ricci curvature lower bounds,
in order to avoid confusions, we always denote k for the Bakry-Emery curvature
condition, k. for the exponential curvature dimension condition and k. for a lower
bound on the Coarse Ricci curvature. Throughout the paper, s, ke, k. will always
be positive numbers.

Let us begin with the curvature-dimension condition of Bakry and Emery
CD(k, 00).

The third notion of curvature we shall now introduce is the coarse Ricci curva-
ture. In order to define it, we first need to introduce Wasserstein distances.

4.2 Preliminary

In this section, we present some technical lemma and some general results of
functional inequalities in the graph setting, without assuming any curvature condi-
tion. We shall apply the tools of chapter 2 and chapter 3. Since the fisher information
is defined by the operator I', we will compare it with the gradient length V, in order
to connect it with the weak transport inequalities.

4.2.1 Comparison of the gradient V and I'-operator

Lemma 4.2.1. Let 7 be the reversible probability measure for the Markov kernel k.
For any bounded function f and g on X, the following inequalities hold :

(i) I T(f, 9)dm < V2] [ [Vg|[V fldr,
(i1) | S T(f.9)dn| < V2T [ [Vgly/T(f)dr.
Moreover, if we suppose that f is non negative, then we have
(i) [ T(f,g)dr < 2V2T [ [Vgly/ [T (V] )dr,
() JT(VF)dr < L [|Vlog f|* fdn.

proof. The proofs of these four inequalities all follow similar arguments. Denote the
positive part and negative part of a function u as u, and u_ respectively.
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(4) : Using the relation (uv)y < ujvy +u_v_, we have

[P0 gsdr = S | S ()~ F@)al) — ga))| K yin(a)

Tz Lly~zx +

<33 T 000) — 9@+ () — [@)) K (o, 9)7(a)

T Yy~

£33 (00) ~ 9(e)-(F(w) — F()) K x, y)m(a)

T Yy~

Now by reversibility of the measure , it holds
> (9(y) = 9(@))+ (f(y) = f(@2))+ K (2, y)m(x)
= > > (9(y) = 9(2) - (f(y) = f(2))-K(z,y)n(x)

T y~T

< IVgl@) Do (f(2) = f(y)-K (@, y)m(2),

y~z

Where the latter inequality follows from |[Vg|(z) = (g(y) — g(z))_ for all y ~ z.
Therefore, we get

[T(f.0)cdr < SINal S () - f@) K(wy)n().  (422)

y~z

In [£2.2), using (£, 9) < T(f,9)+ and £yea(f(y) = f(@)-K(x,y) < [Vf](2) (),
we get (7).
(#7) : By the Cauchy-Schwarz inequality, it holds

<Z<f<y>—f<x>>_f<<x,y>) < J(@) S UW) - F@) K e,y) < 20T(f) (42.3)

y~z y~z

Combining (4.2.2) and (4.2.3)) leads to

/F(f,g)+d7r < /\ggh/QJF(f)dw. (4.2.4)

Following a similar argument, we have

/ (f,g)_dr < / Vg|\/2JT(f)dn. (4.2.5)

and (ii) follows by (4.2.4]), (4.2.5)) and the inequality
[ r(.g)dn| < max { [ T(f.g)sdm, [T(f,9)-dr}.
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(i17) : Since f is nonnegative, v/f is well defined. Then it holds

/F(ﬁ g)dm = ; DD (fly) = f(@)(9(y) — g(2)) K (z, y)m(x)

T y~zT

= 2 3 3 0) — 9@ T )~ T T )+ F@)K @ y)(o)

T y~T

Now arguing as in (i) and (ii), by reversibility of 7, we get

[T g)dr = 33 () = ()~ (F) = @)~ (T @) + T @)K (@ y)m(a).

T Yy~

Notice that (v'f(y) — V[ (2))-(VF(y) + V(@) < V() = VI(2))-2V(x), we

have

T 9yn <23 S (9) — 9(@)- (£ ) = F @) F@) K (@, y)m (@)

T y~T

<2v2J [ Vgl fT(/F)dr

where the last step we have used with u := /f.

(iv) : If f is the null function, there is nothing to say. Otherwise, if there exist
x,y € X such that f(z) =0, f(y) > 0, it is easy to see that |V log f(y)|*f(y)7m(y) =
00. So we only need to prove the case f(x) > 0 for all x € X.

Since f is a positive function, one can rewrite f = €9, it is enough to prove that

/F(eg/Q)dW < i/|/€g|269dﬂ

holds for all function g. In fact, by convexity of function x +— e*, we have for all
a>b, (a—Db)e* > e* — e’ Thus

J[1gker> X (g(e) - g(u))*e" K (2, y)(a)

z~y;9(y)<g(z)

2
>4 > (egg) — eg(;)) K(z,y)m(x)

a~y;9(y)<g(@)
= 4/F(eg/2)d7r
n

4.2.2 Transport-information inequalities implies transport-
entropy inequalities

We prove here the discrete version of Theorem 2.1 in [53]. The proof is essentially
unchanged, we give it to justify the validity of the theorem in the discrete setting.
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Theorem 4.2.6. Assume that the transport-information inequality
Wi(frm)? < o Zel))
holds. Then we have the transport-entropy inequality
Wi (fm, m)? < éEntﬂ(f).
proof. The transport-entropy inequality 77(C') is equivalent to the estimate

Y A2
dm < —
/6 TSP (20)

for all 1-Lipschitz function f with [ fdm = 0 and all A > 0. Let f be such a function.
Let Z()\) := [eMdr and py := eMN7w/Z()\). We have

d 1 4 rT(eM/?)
g Z(\) = o [ feMdr < <z /
7 log (A) 70 feMdm < Wy a(pn, ) \J o 70 dm
Using the inequality [ T'(f)dm < [ f?T'(log f)dnr, we deduce
d A
ZlogZ\) < 2
g Z(M) <
which integrates into log Z(A\) < A\?/(2C), and this is the bound we were looking
for. []

We shall now show that the weak transport-information inequality Tj[ implies
the weak-transport-entropy inequality T3 H. The proof is an adaptation of the one
for the Ty and T,I inequalities in the continuous setting from [53].

Theorem 4.2.7. Assume that m satisfies the modified weak-transport information
inequality T31(C), then m satisfies the weak-transport inequality Ty H(C).

proof. According to [50], the transport-entropy inequality Ty is equivalent to

/exp <é@1f> dm < exp (é/fdw) Vf: X — R bounded.

Usually, the class of functions f we must use is the class of bounded continuous
functions, but here, since we work on a discrete space endowed with a graph distance,
we only have to work with bounded functions.
We write F(t) := log [ exp(k(t)Q.f)dr — k(t) [ fdr with k() := Ct. Let p; be
the probability measure with density with respect to 7 proportional to exp(k(t)Q.f).
According to part (iv) of Lemma [1.2.1] we have

/F<€%(k(t)atf))dﬂ- < /|fvjk(t)@tf|2d,ut
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Hence, for ¢t > 0, we have

F'(t) < eXp( () i ( / K (1) Or fF RS g — / KOIVO, f|2ek<t>@tfd7r> _ K1) / Fdr
< (/ O (tf)dpn — /tfdw) k() [ IVQuPdp,
(Mt, /|VQtf| djiy

t 02 / D(e3*ORN) g — k(1) / VO, f2dps

< <t02 k(lt)> / |Vk5( )Qtf|2d,ut

]

4.2.3 Transport-information inequalities imply diameter
bounds

We now show that transport-information inequalities imply diameter bounds, in
the spirit of the L' Bonnet-Myers theorem of [85]. The main idea is the observation
following :

Proposition 4.2.8. If v = fx is a dirac measure, say J., then it holds

Z.(f) = 4J(2).

proof. Since f is the density function correspond to the Dirac mass v =9,, f := Wl(z 7
1
[/ ndx =+ (zm/f(z))%(z, () + ST Pr)0))
y~z y~z
= > (V[ k(z,y)m(2) = J(2)
]

With this proposition, one deduce immediately

Theorem 4.2.9 (Diameter estimate). Assume that the transport-information in-
equality

<tz

Wi a(fm, )% < <@

holds, for some distance d. Then

2
sup d(z,y) < =
x,yer ( y) C

(Vi@ +Iw)
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Remark 4.2.1. Here d can be any distance defined on X.

proof. Let f, and f, be the density functions of d, and J, with respect to m. Ac-
cording to Proposition [4.2.8] it holds for all z,y € X,

d(:zc,y) = Wl((sxv 5y) < Wl(fa:”»”) + Wl(fy”v 7T) < é (\/4J(33) + \/4J(?/)) .

]

4.3 The Bakry-Emery curvature condition CD(x,
o)

In the graph setting, this curvature condition was first studied by Schmucken-
shlager in [92] and then by S.-T. Yau and his collaborators in [9, 59} 23], 67]. It has
also been used in [63], where a discrete version of Buser’s inequality was obtained,
as well as curvature bounds for various graphs, such as abelian Cayley graphs and
slices of the hypercube. Note that most of these works are set in the framework of
graphs rather than Markov chains, which generally makes our definitions and theirs
differ by a normalization constant, since we enforce the condition .

Definition 4.3.1. We define the iterated I' operator I'y as

1

La(f) = SLE(f) = T(f. L),

We say that the curvature condition CD(k, 00) is satisfied if, for all functions f,
we have

La(f) = &I(f).

The T’y operator and the curvature condition were first introduced in [6], and
used to prove functional inequalities, such as logarithmic Sobolev inequalities and
Poincaré inequalities, for measures on Riemannian spaces satisfying CD(k, oo) for
k > 0. In the Riemannian setting, the I's operator involves the Ricci tensor of the
manifold, and the condition CD(k, co) is equivalent to asking for lower bounds
on the Ricci curvature, and more generally to the Lott-Sturm-Villani definition of
lower bounds on Ricci curvature (see [69] and [96] for the definition, and [4] for the
equivalence between the two notions). Hence CD(k, 0o) can be used as a definition
of lower bounds on the Ricci curvature for non-smooth spaces, and even discrete
spaces.

In this section, we assume that the Markov chain satisfies the curvature condition
CD(k, 00) for some x > 0. One of the main tools we shall use is the following sub-
commutation relation between I' and the semigroup P;, which was obtained in [63] :

Lemma 4.3.2. Assume that CD(k, o) holds. Then for any f : X — R, we have
L(Pf) < e ™PRI(f).
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Remark 4.3.1. This property implies that if f is 1-Lipschitz for dr, then P;f
is e "'-Lipschitz. Therefore, the condition CD(k,00) implies that the coarse Ricci
curvature of the Markov chain, using the distance dr, is bounded from below by k.

4.3.1 L'-transport inequalities

Here we shall prove two inequalities connected to the L' Wasserstein distance
under CD(k, c0).

Theorem 4.3.3. Let K be an irreducible Markov kernel on X and 7 the reversible
invariant probability measure associated to K. Assume that CD(k,00) holds with
k > 0. Then 7w satisfies the transport-information inequality TiI with constant k.
More precisely, for all probability measure v := fm on X, it holds

Wil < 5 Ta1),

With such a result in hand, we can then follow the work by Guillin, Leonard,
Wang and Wu [53], to prove a transport-entropy inequality T; holds, so that the
Gaussian concentration property follows as well.

Proof of Theorem |4.3.5. The proof relies on the Kantorovitch-Rubinstein duality
formula

Wi(m,v) = sup [ gdm — /gdv.

g 1—lip
Let g be a 1-Lipschitz function. It implies that I'(g) < J.
First, using the Cauchy-Schwartz inequality, it holds

— [ TR, f)irn =~ 33 (Pgy) ~ Pog(a)) ((y) — @)K () ()

= 15" (Ratw) - Po@)(/F(0) ~ T@) (/T w) + F@)IK o)
< (/1) (Sl - P (/10 + i)

T Y

Now applying the Cauchy-Schwartz inequality again, the latter quantity is less than

(/rw)dW)%(Z(Ptg() Pug(@)2(/7w) + VT (@) x)>;‘

x7y

Therefore, we have

- [t pyir < ([ T/t (S (Bato) = o) (/) + o)

w7y

< ‘@WW’

()

v
[NIES

)

[
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where the last step we have used the reversibility of the measure 7 and the fact that

(VF@) +F@)? <2(f(x) + f(y) (4.3.4)

for any nonnegative function f.
Therefore, according to Lemma [£.3.2] we have

[oir~ [gpir= "% [ (Pog)fim

_ _/0+OO/F(Ptg,f)d7rdt

<[ mmdt
SCNATE \/ | P (g)) fm
< \/j—‘]\/f(ﬁ

The result immediately follows by taking the supremum over all 1-Lipschitz func-
tions g. O

Using, similar arguments, we can also prove the following Cheeger-type inequal-
ity :
Proposition 4.3.5. Assume that CD(k, 0o) holds. Then for any probability density
f with respect to w, we have

Wi (fr,m) < \{j/\/F(f)dw.

We call this a Cheeger-type inequality, by analogy with the classical Cheeger
inequality

Ifm — 7l < c/ IV f|dor.

Here [ /T(f)dm is an L' estimate on the gradient of f, while both Wy 4.(f7, ) and
|| fm — 7|7y are distances of L' nature.

proof. Once more, by Kantorovitch duality for W;, and since 1-Lipschitz functions



88 CHAPITRE 4. RICCI CURVATURE ON GRAPHS
g satisfy I'(g) < J, we have

Wi (fm,m) < sup gfdﬁ—/gdﬂ

gl'(9)<1

+o00o
= sup / /F P,g, f)dmdt

g:T'(g
+o00
< sup /\/Ttg\/idwdt
gT(9)<J
+oo
< sup e’“t/\/PtF(g)\/F(f)dﬂdt
gl(g)<s /0

< ﬁ [Ty

]

Since CD(k, 0o) implies the L! transport information inequality, combining with
the latter theorem, one can obtain a diameter estimate which is weaker than Corol-
lary [4.3.8] In order to obtain Corollary [.3.8 we need to revisit the proof of theorem
[4.3.3 and prove the following lemma.

Proposition 4.3.6. Assume that CD(k, 00) holds, then Wi(m,d,) < QJK(Z)

The proof is essentially the same as the proof of theorem the fact that
supposing v = ¢, leads to some better constants.

proof. Denote f the density function of , with respect to w. Observe that f satisfies

(Vf )+ f(@)) + f(y)) (4.3.7)

Then following the lines of the proof of theorem | , we have for all 1-lipschitz
function g,

- [r(Rg.pyan < ([ r<ﬁ>dw)é(z<ag<> P () (V1 (w) + /7 @)

x’y

<V [ T(Pg) far

= VI (Pg)(2).

Applying [4.2.8| and inequality I'( P,g) < e 2#T'(g), one deduce that

—/F(Bg,f)dw <2/ T2 (Pig)(2) < 2670 (2).

r)at)

[NIE
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Therefore, according to Lemma [4.3.2, we have

/gdw—/gfdw — /OJFOO;;/(Ptg)fdwdt

_ _/0+°O/F(Ptg,f)d7rdt
< 2J(z)

K

The proof is completed. O
Corollary 4.3.8. Assume that CD(k,00) holds, then
d(z,y)r < 2(J(2) + J(y))-
Recall that under coarse Ricci curvature condition (see section [4.5), Ollivier has
proved in [85] the same type inequality : k.d(x,y) < J(x) + J(y).
proof of Corollary[4.3.8 According to the latter proposition, we have

d(z,y) = Wi(6,,6,) < Wi(8e, ) + Wi (7,5,) < z(J(a:) + ).

4.3.2 L’-transport inequalities

Under condition CD(k, o), we have not been able to obtain a transport-entropy
inequality involving a weak transport cost. However, we can still obtain a bound on
Wo(r| fm)? with the Dirichlet energy.

Proposition 4.3.9. Assume that CD(k, 0o) holds. Then for any probability density
f with respect to w, we have

V2J

K2

W (| fm)* <

/F(f)dw.

Unlike the transport-information inequality, this inequality does not seem to
imply a transport-entropy inequality, and does not seem to be directly related to
concentration inequalities.

proof. First, for any bounded continuous function g on X, we have :

[ Qusar~ [Goin =~ [T % [ PGy raxat

- o JT(PAGg), it = [ +O° [V (Qa) T (Fdndt (4.3.10)
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According to Lemma CD(k, 00) implies that T'(Py(g)) < e 2 P,(T'(g)) holds
for all g. Hence,

[ @ o < [ [ @ o 6

On the other hand, by Lemma [2.2.7/and (2.1.5)), it holds

[ e~ fois = [ | St

U rd L
< [ [ S@uldrat <~ [1NQgfdn (43.12)
o J dt 4

Now applying part (i) of Proposition |4.2.1] we get
L[ [WQgPir <~ [T(Gg)a
- = T ——— T
1 g W2 g
1 ~ +o0o K ~
——— [ PP@Qgyr = [ e [~ PT(Qg)drdt (4.3.13
4\/§J/ (Qg)dr 0 e 4\/§Jt(Qg)7T ( )

Combining (4.3.10)), (4.3.11]), (4.3.12)) and (4.3.13)), we have

/@gfdﬁ—/gdﬂ:/@gfdw—/@gdw+/@gd7r—/gd7r
< [T ([ VRT@aNED - s nr@ads ) a

< /O T et / ‘/E‘]r( Fdrdt
‘g‘]/r(f)dw

The conclusion follows by the duality fomula (2.1.2) while taking the supremum
when g runs over all bounded continuous function on the left hand side of the last
inequality. O

4.4 The exponential curvature condition

Bauer et al. introduced the following curvature condition in [9], which is a modifi-
cation of Bakry and Emery’s curvature condition. Under this condition, they obtain
various Li-Yau inequalities on graphs, and then deduce heat kernel estimates and a
Buser inequality for graphs.

As we have mentioned before, the main differences between the continuous and
discrete settings is the when the operator L is not a diffusion operator. We lose the
chain rule. This leads to additional difficulties, and some results, such as certain
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forms of the logarithmic Sobolev inequality, do not seem to hold anymore. On
the other hand, one of the main difficulties in the continuous setting is to exhibit
an algebra of smooth functions satisfying certain conditions, while this property
immediately holds in the discrete setting.

The main idea in [9] is the following observation.

The key chain rule used in the continuous setting is the identity

L(®(f)) = ' (f)Lf + "(/)T(f)

which characterizes diffusion operators in the continuous setting, and does not hold
in discrete settings. However, a key observation of [9] is that when ®(x) = /z, the

identity
2\/fL\/f = Lf —2U(\/f)

holds, even in the discrete setting. This observation motivated the introduction of
a modified version of the curvature-dimension condition, designed to exploit this
identity :

Definition 4.4.1. We define the modified Ty operator Ty as

o (f, f) 3—F2(f)—F<f7F(fﬂ>'

We say that the exponential curvature condition CDE’(k., 00) is satisfied if, for all
nonnegative functions f and all x € X, we have

Pao(f)(2) = kel (f) (),

Remark 4.4.1. We use the notation CDE’(k., o) to agree with the notations of
[9], where they also consider the case when the condition is only satisfied at points
x where Lf(z) <0.

In [83], it is shown that CDE’(k., o) implies CD(k, 00) with k = k.. When the
operator L is a diffusion, the conditions CDE(k., c0) and CD(k, 00) are equivalent.

In [59], it was shown that the CDE’(k., co) condition tensorizes, and that the
associated heat kernel satisfies some Gaussian bounds.

In this section, we assume that the exponential curvature condition CDE’(k,, 00)
holds. We will prove some transport inequalities. Since CDE’(k,, 0o) implies CD(k,
00), the results in the last section are still available. We are going to show some
stronger inequalities.

First, we shall study some properties of the CDE’(k,, 00) condition.

4.4.1 Properties of CDE’(k,, o)

Recall that in classical Bakry-Emery theory, the commutation formula is the
following : for all f(smooth enough), +/T'(P,f) < e " P,(1/T'(f)). We have not been
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able to recover this formula under CDE(k,, 00) in graphs settings. However, assum-
ing f is positive, we get the similar commutation formula, which associate the fisher
information.

Lemma 4.4.2. Assue that CDE’(k, 0o) holds. Then for any nonnegative function
f: X —Randanyt >0, we have

(i) T(VRS) < e ' PT (V).

(“) Fg}f) < efZKEtPt (%)

proof. The proof follows a standard interpolation argument. We begin with (7). Let
g := P,_,f and define p(s) := e 2 5P, (F(\/E)) To obtain the result, it is enough
to show that ¢’ > 0. In fact,

o) = o L) - T (V5 22) - 2603

> 0,

where we have used the assumption on the curvature, which is equivalent to

L(f?)
2f

1
§Lr(f) -I <f7 ) = /ier(f)
(see (3.11) in [9]).
Similarly, let ¢(s) 1= e 2% P, (%). Again, it is enough to show that ¢’ > 0.
We have

r 1 r
Y (s) = e " Py (L <(gw> + 7 (—2¢I'(g9, Lg) +T'(9)Lg) — 2/<;(gw> . (4.4.3)
Since g is positive, we only need to show that
r 1 r
g (L (fj)) + L Came. 1) 4 T o) - 2;’”) S0 (444

Notice that (4.4.4)) is equivalent to
I'(g 1
gL <§])> — (g, Lg) + _Tlg)Lg > 2rT(g),

and we conclude by writing

2T(g) < 2Pa(g) = 2 (mg) (g, ””)) gL (”j)) -2y, Lg) + S(0) s
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This lemma immediately yields that under CDE’(k,, 00), the Fisher information
and the modified Fisher information have exponential decay with respect to the
heat flow :

Theorem 4.4.5. Assume that CDE(k., 00) holds, then we have

Io(Pof) < e Ia(f),

and

In(Pif) < e I(f).

With this theorem, consider the transportation cost between v, := P, f7, we can
see that the transport-information inequality in fact tells that the transportation
cost has an upper bound which decays exponentially.

Another consequence of Lemmafd.4.2]is that under CDE’(k,, 00), a modified log-
Sobolev inequality holds.

Theorem 4.4.6. Suppose 7 satisfies C DE'(ke, 00), then it satisfies modified Log-
Sob following : Vv = fm probability on X,

Ent.(f) < ! /F(f)dﬁ

2K f
proof.
Ent,(f) = Ent(Pyf) — Ent(Puf) = /0 - / (log P.f, P.f)dndt.
now using
[Ttog P.f, Popyin < [ F(Jf}f )i
we obtain
Enty(f) < [ / D gt

Now using item (7i) of Lemm, we get an upper bound for entropy :

Ent,( // MP( )d dt < 2/

O

4.4.2 Weak transport-information inequalities under
CDE’(k, c0)

Using Lemma [£.4.2] we can prove some weak transport-information inequalities
under CDE’(k,, 00).
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Theorem 4.4.7. Let (X,d) be a connected graph equipped with graph distance d.
Let K be a irreducible Markov kernel on X and 7 the reversible invariant probability
measure associated to K. Assume that C DE'(k.,o0) holds with k. > 0. Then 7 sat-
isfies the transport-information inequality T3 1 with constant k.//2. More precisely,
for all probability measure v := fm on X, it holds

N 2J 2
Walfrlm)? < 5Tf) < STe(f)

Again, following the ideas of [53], one can deduce that the weak-transport en-
tropy inequality T3 H holds. On the other hand, since the weak-transport cost is
stronger than the L!-Wasserstein distance, it yields immediately T;I holds, which
implies T1H and Gaussian concentration results.

Proof of Theorem[{.4.7. Let a(t) = e "< for any probability density f with respect
to m and any t > 0, applying Theorem [2.3.9] it holds :

oo - 00 K
— [ Q. Pddtg/ /——e—“et
/0 dt/Q(t)g 2 fdm 0 46

According to part (7i7) of Lemma we have

VQawy9*Pif + T(Qawg, Pif)dmdt
(4.4.8)

~ o d [~
/ngdﬂ'— /gdﬂ :/0 %/Qa(t)gptfdﬂ-dt
[ele] K/e —x ~ ~ —
< /O / =€ VQawg*Pif + 2V27[V Q| P fT(\/Pof)drdt

oo 8 Jeret
</0 . /F(\/Ptf)dwdt.

Now we apply Lemma [4.4.2] and we get

[ Qosin— [ain < [ Senct/pt (r(/ ) dmat

Re

=5 [r( /= 257.).

2
Ke

The conclusion then follows from the duality formula (2.1.2]) by taking p = 7
and v = fm. m

It is easy to see that Z.(f) < Z.(f) == [ %dﬂ, thus we have the following
corollary :

Corollary 4.4.9. Assume that the exponential curvature condition CDE’(Ke,o0)
holds, then 7 satisfies the following weak-transport information inequalities :

Walfaln)? < Za(0).

e
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Unfortunately, we have not been able to establish the relation of W(r| f7)2 and
JT(v/f)dr. However, as in Corollary we get a weaker inequality as follows :

Theorem 4.4.10. Assume that the exponential curvature condition CDE’(Ke,o0)
holds, then 7 satisfies the following weak-transport information inequalities :

Walrlfn)? < 2 Ta().

e

proof. We prove this theorem in a similar way as the previous one.
Let a(t) := 1 — e " Arguing as in the latter theorem, we get

~ oo ~
[ Qodn— [ gfdn = |~ = [ QuoygPifdnt
[e.9] K ~ ~ ~
< |7 [ =53¢V Qg Pif = D(@Qag. Pif drdt
Now applying part (ii) of Lemma it follows that

/@gdﬂ—/gfdﬂ < /Ooo/—’jfe—“et ?@a@)gﬁptf+/W@a(t)gh/zjr(ﬂf)dwdt

g/000 2J6Het/F(Ptf)d7Tdt</OO2L]Zjet/Pt (I‘(ff)> drdt

Re Ptf 0
2J rT(f
~ W (f)d”

O]
Remark 4.4.1. (i) One can get Corollary[4.4.9 by a similar argument : let a(t) =

e—nt

N oo ~
[ee] K T — A
</0 / —5¢ "IV Qawgl*Pif + V2TV Qawgly/ U (Pf)|dmdt

oo Jet rT(Pif) J I(f)
g/o - / B dﬂdtgﬂg/fdwdt.

(ii) Using the notations of [50], define Wy(fm, )% = %(Wg(fﬂﬂ) + W2(x|fr)),
denote Py(X) as the set of the probability measure on X which has a finite second
moment. Then (Po(X), Wal(.,.)) is a metric space, and if X satisfies the exponential
curvature condition, we have an upper bound for WQ(., ) in terms of modified Fisher
information. Of course, when we work on a finite space, any probability measure has
finite second moment.
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4.5 Coarse Ricci curvature

Finally, we recall the definition of Coarse Ricci curvature, which has been in-
troduced by Ollivier in [85] for discrete-time Markov chains. Since we shall work in
continuous time, we shall give the appropriate variant, introduced in [61]. Previous
works considering contraction rates in transport distance include [29] 90} [84]. Appli-
cations to error estimates for Markov Chain Monte Carlo were studied in [62]. The
continuous-time version we use here was introduced in [61]. The particular case of
curvature on graphs has been studied in [60].

Definition 4.5.1 (Coarse Ricci curvature). The coarse Ricci curvature of the
Markov chain is said to be bounded from below by k. if, for all probability mea-
sures p and v and any time t > 0, we have

Wi(P; i, Piv) < exp(=ket)Wh(p, v),

i.e. if it is a contraction in Wy distance, with rate k..

Note that unlike the CD(k, oo) condition, this property does not only depend
on the Markov chain, but also on the choice of the distance d.

In this section, we assume the Markov chain has coarse Ricci curvature bounded
from below by k., with respect to the graph distance d,.

Under coarse Ricci curvature condition, the inequality 717 (k.) holds

Theorem 4.5.2. Let X, 7w, K define as before. If the global coarse Ricci curvature
is bounded from below by k. > 0, then the following transport inequality holds for
all density function f :

Wi, m? < Tel) (= ST0)) < Tl

k2T

As a corollary, this last result implies a T} inequality for such Markov chain,
which has been previously obtained by Eldan, Lehec and Lee [31].

As a consequence of the bound on the curvature, note that for any 1-Lipschitz
function g, P,g is e "<!-Lipschitz.

The problem of proving a transport-entropy inequality for Markov chains with
positive coarse Ricci curvature was raised in Problem J in [86]. It was proved by
Eldan, Lee and Lehec [31]. The transport-information inequality is a slight improve-
ment of this result. Note that 7} cannot hold in the full generality of the setting of
[85], since it implies Gaussian concentration, which does not hold for some examples
with positive curvature, such as Poisson distributions on N.

The proof of this result will make use of the following lemma :

Lemma 4.5.3. If the coarse Ricci curvature is bounded from below by k. > 0, then

Wi(fm m) < glf Y| K (z, y)m(x).
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proof. By Kantorovitch duality for Wi, we have

Wh(fm,m) = ?171%) gfdw—/gdﬂ: ?1}? —/()Jroo(i/Ptgfdwdt
= [T S (RI0) ~ P 0) ~ SDK gy
< / 1Pigllin_ 1£(0) = f(@)|K . )w(a)

Z YK (z, y)m(x).

C oty

We can now prove Theorem :
Proof of Theorem[{.5.3. Observe that

> (7w + i) K

TF#yY
= 5 (2160 +2000) - (VF0) - 1)) ) Koyt
TF£Y
< ; 2f(x) + 2f () K (2, y)m(x) — ; (ﬁ@;) - my)) K (z,y)m(2)

<4J - ;Lr(f>

Now using Lemma [£.5.3] we have

Wi(fm,m) < *Z |f(x) = f(y)| K (z,y)7m(x)

Re gty
HC;M )= I (V@) + 1)) K@ p)n)
<= Lr(f)JiZ; (Vi) + V) Ky
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4.6 An example : the discrete hypercube

As an example of Markov chain satisfying CDE’(k, oo), we study the example
of the symmetric random walk on the discrete hypercube. It is a Markov chain
on {0,1}", which at rate 1 selects a coordinate uniformly at random, and flips it
with probability 1/2. The transition rates are K(x,y) = 1/(2N) for z,y such that
dy(z,y) =1, and else it is 0.

Theorem 4.6.1. The symmetric random walk on the discrete hypercube satisfies

CDE'(1/N, )

proof. We start with the case N = 1. Since then we only have to consider a

Markov chain on a two-points space, we can easily do explicit computations. Fix
f:{0,1} — R. We have

and hence I' (f, %) =0 and

Ga(f) = Ta(f) = =L(f, Lf) = T(f).

Therefore when N = 1, the Markov chain satisfies CDE’(1, o0).

The general case follows, using a tensorization argument. In the unnormalized
case, using Proposition 3.3 of [59], the graph satisfies CDE’(1, co) independently of
N. Since we consider the case of a Markov chain and enforce , we rescale the
generator by a factor 1/N (so that there is on average one jump by unit of time),
and therefore it satisfies CDE’(1/N, 00). O

Remark 4.6.1. We have shown that for the two-point space, the exponential cur-
vature and the curvature are the same, and equal to 1. In [63)], it is stated that
the curvature is 2. The difference is because, since we enforced the normalization

condition (4.1.1)), the definitions of L in the two frameworks differ by a factor 2.



Chapitre 5

Transport inequalities on the line

Abstract

In this chapter, we begin with studying the optimality in a class of weak transport
costs. Then we characterize the following inequalities on R :

— The weak transport entropy inequality T(#) with 6 convex and vanishing on

a neighborhood of 0.

— The weak transport entropy inequality T(6) with § quadratic-linear.

— The weak transport entropy inequality T(6) with 6 a general convex cost.

— The convex modified Sobolev logarithmic inequality CmLS.
We finish by proposing a necessary condition for transport information inequality
TT and examples of real probabilities which satisfies Ty but not T1I.

99
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5.1 Introduction

In this chapter, we restrict to a one dimension space, the real line. Denote P(R)
the set of probability measures in R and P;(R) the subset of probability measures
having finite first moment.

Let # : R™ — R* be a measurable function ; the usual optimal transport cost in
the sense of Kantorovich between two probability measures p and v on R is defined
by

To(w. ) = nt [[ 0l — yl) w(dady).

where the infimum runs over the set of couplings m between p and v, i.e probability
measures on R? such that 7(dz x R) = p(dr) and n(R x dy) = v(dy).

In the last years, since the works by Marton [74, [75], [76], transport-entropy in-
equalities have been extensively studied as a tool to reach concentration properties
for measures on product spaces. We refer to the books or survey [64], 20, 44] for
bibliographics references on this field. More precisely, given a measure on a product
space, and assuming that each of its conditional one-dimensional marginals satis-
fies a transport-entropy inequality, many authors have obtained transport-entropy
inequalities for the whole measure under weak dependence assumptions (see for in-
stance [28, [77, 100]). Then, the transport-entropy inequality for the whole measure
leads to concentration properties by classical arguments as the so-called Marton’s
argument.

The best known example of transport-entropy inequality is the following Tala-
grand’s transport inequality

T(0) - To(vo) SH(|w), Vv e P(R),

for which 6 is a quadratic cost function §(x) = Cx? with constant C' € RT; H(v|u)
denotes the relative entropy (also called Kullback-Leibler distance) of v with respect

to u, defined by
d
H(v|p) = /log (df) dv,

if v is absolutely continuous with respect to p, and H(v|u) = oo otherwise. It follows
that the product measure p ® --- ® p also satisfies the Talagrand’s transport in-
equality with the same constant C, by using the well known tensorisation property
of T(6) (see [44]). When the measure on the product space is not product, differ-
ent non-independent tensorisation’s strategies have been proposed that reduce the
problem to verify one dimensional transport-entropy inequalities [28|, [77, [100].
Therefore, it is of real interest to characterize the probability measures ;1 on R
satisfying T(0) for any general cost function 6.
Let F, denote the cumulative distribution function of a probability measure
defined by
w(x) = p(—o0, 7], Vz € R.
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and £, its general inverse defined by

F Y u) :=inf{z € R, F,(z) > u} € RU {0}, Yu € [0, 1].

m

In [43], N. Gozlan has obtained necessary and sufficient conditions for the transport-
entropy T(6) to hold, when the cost function v is in particular even, continuous,
convex with (0) = 0. These conditions are expressed in terms of the behavior of
the modulus of continuity of the increasing map U, defined by

U, =F, Lo F,,
where 7 is the symmetric exponential distribution on R
Lkl
7(dx) = 3¢ dx.

This map can also be expressed as follows

F—l
UH(JI) = { Flil
o

1— %e_m) it =

>0
e*m) ifxr <0’

Following [43], here we focus on the study of a new weak transport-entropy
inequality introduced in [50], for which a tensorisation property also holds (see
Theorem 5.11 of [50]). More precisely, in dimension one, we consider the optimal
weak transport cost of v with respect to u defined by

To(v|u) = igf/@ (

T — /yp(ﬂf,dy)’) p(dx)

where the infimum runs over all couplings n(dzdy) = p(z,dy)u(dz) of u and v,
and where p(z, -) denotes the disintegration kernel of 7 with respect to its first
marginal.

In terms of random variables, one has the following interpretation

To(vlu) = nfE (6(X — E(Y|X)])).

whereas

To(v, ) = inf E (6(|X —YT)),

where in both cases the infimum runs over all random variables X, Y such that X
follows the law p and Y the law v. As a consequence, when @ is convex, by Jensen’s
inequality, one has

To(vlp) < To(v, p).

Therefore, if a measure u satisfies T(#) then it also satisfies the following weaker
transport-entropy inequalities.
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Definition 5.1.1. Let 0 : R™ — R™ be a convex cost function. A probability measure
i on R is said to satisfy the transport-entropy inequality

T(6) if for all v € Pi(R), it holds

To(vlp) < H(v|w);
T (0) if for all v € Pi(R), it holds

To(ulv) < Hv|w);

T(0) if u satisfies T (0) and T (0).

In section [5.2] we recall a dual formulation of these weak transport inequalities
in terms of infimum convolution operators. This formulations are related to the so
called convex (7)-property introduced by Maurey [78] and developed in [91].

This new weak transport-entropy inequalities are of particular interest since the
class of measures satisfying such inequalities also includes discrete measures on R,
for examples, Bernoulli, binomial and Poisson measures [50, 91]. We know that the
classical Talagrand’s transport inequality can not be satisfied for discrete measures.
Indeed it is well known that the Poincaré inequality is a consequence of Talagrand’s
transport inequality that forces the support of x to be connected.

However, we will see below that when the cost function € is quadratic near 0, the
above weak transport inequalities are strongly related to the Poincaré inequality,
but restricted to the class of convex functions.

5.2 Dual formulation for weak transport-entropy
inequalities.

In this short section we recall the Bobkov and Goétze dual formulation of the
transport-entropy inequality and its extensions, borrowed from [50], related to the
transport-entropy inequalities of Definition [5.1.1], in terms of infimum convolution
inequalities. The results are stated in dimension one to fit our framework but hold
in more general settings (see [50]). They will be used in the next sections.

Lemma 5.2.1. Let p € P1(R) and 0 : R™ — R be a convex cost function and, for
all functions g : R — R bounded from below, set

Q:9(x) ::grellfk{f(y)+t9<|x;y|>}, t>0,zeR.

Then the following holds.
(i) w satisfies T(0) if and only if for all g : R — R bounded from below it holds

exp (/ ngdu> exp <—/9dﬂ) <L
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(ii) u satisfies T+(9) if and only if for all convex g : R — R bounded from below
it holds

exp (/ Q19 du) /exp(—g) dp < 1.

(iii) p satisfies T (0) if and only if for all convex g : R — R bounded from below
it holds

/eXp(Q1g) dpiexp (—/gdu> <1

(iv) If u satisfies T(0), then for all convex g : R — R bounded from below it holds

/eXp(th) du/exp(—g) dp < 1, (5.2.2)

with t = 2. Conversely, if u satisfies (5.2.2]) for some t > 0, then it satisfies
T(t0(- /t)).

Démonstration. The first item is due to Bobkov and Gotze [13] and is based on
a combination of the well-known duality formulas for the relative entropy and for
the transport cost Ty. Items (i7) and (iii) generalize the first item to the frame-
work of weak transport-entropy inequalities. We refer to [50, Proposition 4.5] for a
more general statement and for a proof (based on an extension of duality for weak
transport costs).

Finally we sketch the proof of Item (iv) (which already appeared in a slightly
different form in [44, Propositions 8.2 and 8.3]). By the very definition, if x satisfies
T(0) then it satisfies T"(0) and therefore, it satisfies the exponential inequalities
given in Items (ii) and (éi7). Note that if ¢ is convex and bounded from below then

(D19 is also convex and bounded from below. Therefore it holds

exp (/ Qg du) /exp(—g) dp <1

and

/eXp(Ql(ng))dueXp (—/Qw du) <L

Multiplying these two inequalities and noticing that Q1(Q19) = Q2g (for a proof of
this well-known semi-group property, see e.g [99, Theorem 22.46]) gives ((5.2.2) with
t = 2. The converse implication simply follows from Jensen’s inequality. O

5.3 Convex ordering and a majorization theorem

This section is devoted to the study of the convex ordering. The notion of convex
ordering, characterized by Strassen’s Theorem [95], is crucial for the comprehension
of the weak transport costs T(v|u). In section we recall the definition of the
convex order and its geometrical meaning in discrete setting given by Rado’s theo-
rem [88] (see Theorem [5.3.10). From this geometrical interpretation, we obtain an
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intermediate outcome, Theorem [5.3.11} that can be interpreted as the discrete ver-
sion of Theorem [5.4.2] Then, the proof of Theorem [5.4.2] given in section [5.4] follows
by discrete approximation arguments. After recalling some classical definitions and

results, we shall prove a majorization theorem which will be a key ingredient in the
proof of Theorem [5.4.2]

5.3.1 A reminder on convex ordering and the Strassen’s
Theorem

We collect here some basic facts about convex ordering of probability measures.
We refer the interested reader to [71] and [57] for further results and bibliographic
references. All the proofs are well-known, we state some of them for completeness.

We start with the definition of the convex order.

Definition 5.3.1 (Convex order). Given vy,vy € P(R), we say that vo dominates
vy in the convex order, and write v =< vy, if for all convex functions f on R,

Jr fdvi < Jg fdvs.

Remark 5.3.2. Observe that for any probability measure belonging to P1(R) the
integral of any convex function always makes sense in R U {+o00}.

The convex ordering of probability measures can be determined by testing only
some restricted classes of convex functions as the following proposition indicates.

Proposition 5.3.3. Let vy, € P1(R) ; the following are equivalent
(Z) 151 j Vo,

(ii) [xvi(dx) = [xve(dx) and for all Lipschitz and non-decreasing and non-
negative convex function f: R — RT, [ f(x) vy (dx) < [ f(z) va(dx).

(ii1) [xvi(dx) = [z e(de) and for allt € R, [[z —t]+ v(de) < [z — t]; va(dx).

For the reader’s convenience and for the sake of completeness, we sketch the
proof of this classical result. We refer to [71] for more details.

Sketch of the proof. Let us show that (i) is equivalent to (ii). First, since the
functions  — x and z — —x are both convex, it is clear that v; < 15 im-
plies [zvy(dx) = [xwa(dx) so that (i) implies (7). Conversely, since the graph
of a convex function always lies above its tangent, subtracting an affine func-
tion if necessary, one can restrict to non-negative convex functions. Moreover, if
f: R — R* is a convex function, then f,: R — R* defined by f, = f on [—n,n],
fn(@) = fu(n) + fr(n)(z —n) if 2 = n and fu(z) = fo(—n) + fi(—n)(z + n) if
r < —n (where f! denotes the right derivative of f) is Lipschitz and converges
monotonically to f as n goes to infinity. The monotone convergence Theorem then
shows that one can further restrict to Lipschitz convex functions. Finally, up to
the subtraction of an affine map, any Lipschitz convex function is non-decreasing,
proving that (z7) implies (7).
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Now it is not difficult to check that any convex, non-decreasing Lipschitz function
f: R — R* can be approached by a non-increasing sequence of functions of the form
ap + 3 [z — t;]4, with a; > 0 and t; € R. This shows that (i7) and (iii) are
equivalent. [

The next classical result, due to Strassen [95], characterizes the convex ordering
in terms of martingales.

Theorem 5.3.4 (Strassen). Let v1,v, € P1(R) ; the following are equivalent :
(i) 11 X v,
(ii) there exists a martingale (X,Y") such that X has law vy and Y has law vy.

We refer to [50] for a (two-line) proof of Theorem involving Kantorovich
duality for transport costs of the form 7.

5.3.2 Majorization of vectors and the Rado Theorem

The convex ordering is closely related to the notion of majorization of vectors
that we recall in the following definition. As for the previous subsection, all the
proofs are well-known and we state them for completeness.

Definition 5.3.5 (Majorization of vectors). Let a,b € R" ; one says that a is ma-
jorized by b, if the sum of the largest 7 components of a is less than or equal to the
corresponding sum of b, for every j, and if the total sum of the components of both
vectors are equal.

Assuming that the components of a = (aq,...,a,) and b = (by,...,b,) are in
non-decreasing order (i.e. a3 < ag < -+ < apand by < by < --- < by), ais maJorlzed
by b, if

an+an—1+"'+an—j+1Sbn+bn—1+"'+bn—j+1v fOI'j:17...,TL—]_,

and >0 a; =Y. b

The next proposition recalls the link between majorization of vectors and convex
ordering.

Proposition 5.3.6. Let a,b € R™ and set v, = % im10q; and vo = =371 0y, The
following are equivalent

(i) a is majorized by b,

(7i) vy is dominated by vy for the convexr order. In other words, for every convex
f:R =R, it holds that 27, f(a;) < X7y f(b;).

Thanks to the above proposition and with a slight abuse of notation, in the
sequel we will also write @ < b when a is majorized by b.
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proof. Assume without loss of generality that the components of a and b are sorted
in increasing order. We observe first that, by construction, the equality [z, (dz) =
[ xve(x) is equivalent to 0 a; = Y0 b;.

We will first prove that () implies (i7). By Item (ii¢) of Proposition we
only need to prove that a < b implies

Z ap — t Z bk — t Vvt € R. (537)
k=1 k=1

Assume that ¢ < maxay (otherwise (5.3.7) obviously holds). Then, let &, be the
smallest £ such that a, > t so that >°p_,[ar — t]4 = Xj_;, (ar — t). Therefore, by
the majorization assumption (which guarantees that Dbk, Ok S D f—, br), we get

Zak—t = (e —1t) < D bp—t <D [be — 14
k=1 k=k, k=ko k=1

Conversely, let us prove that (i) implies (7). Fix k € {1,...,n} and set fy(z) :=
[z — bg]+, x € R. Plugging f; into Item (i7) of Proposition ([5.3.3) leads to

n

S b <3 a bk+—n/f Yn(dz) < /f Yo (dz) = Z[b bk+—2b by,
i=k

=1
so that >°I' . a; < >°I" . b;, which proves that a is majorized by b. O

Next we recall a simple classical consequence of Proposition in terms of
discrete optimal transport on the line.

Proposition 5.3.8. Let x,y € R" be two vectors whose coordinates are listed in
non-decreasing order (i.e. x1 < To < -+ < Tp, Y1 < Yo < -+ < Yp). Then for all
permutation o of {1,...,n} and all convex 6 : R — R, it holds

o0 — i) <302 — Yoi))-

i=1 i=1
proof. Since, for all k, 7", y; = Y0 Yo(i), it holds for Y7, (x; — Z) >0 (g
Yo(s)) (with equality for & = 1). Therefore, denoting y» = (Yo(1), - - - Yo(n)), it holds
T —1y =T —Y,. Applying Proposition [5.3.6] completes the proof. O]

Remark 5.3.9. In particular, let u,v are two discrete probability measures on R of

the form
1& 1 &
=—> 0 and v=—> 0,,
/’L n 22::1 % n Zz::l Yi
where the x;’s and the y;’s are in increasing order, and assume for simplicity that
the x;’s are distinct. Then the map T sending x; on y; for all i realizes the optimal
transport of ; onto v for every cost function 6.
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We end this section with a characterization of the convex ordering (or equiv-
alently of the majorization of vectors, thanks to Proposition , due to Rado
[88]. We may give a proof based on Strassen’s Theorem. For simplicity, we de-
note by S, the set of all permutations of {1,2,...,n} and, given ¢ € S, and
r=(21,...,2,) € R, we set 2, := (To(1), - - - To(n))-

Theorem 5.3.10 (Rado). Let a,b € R™; the following are equivalent
(i) the vector a is majorized by b,
(ii) there exists a doubly stochastic matriz P such that a = bP ;

(i) there exists a collection of non-negative numbers (A\,)oes, With Y ,cs, Ao =1
such that a = Y ,cs, Ao (in other words a lies in the convex hull of the
permutations of b).

Démonstration. First we will prove that (i) implies (i7). According to Proposition
a = b is equivalent to saying that v; = % * 104, is dominated by v, =
— > iy 0, in the convex order. Set X := {a1,...,an}, Y = {b1,...,bp}, ks := #{i €
{1,....n} ra; =2}, v € Xand 0, = #{i € {1,...,n} : b, = y}, y € Y (where
# denotes the cardinality) ; observe that vy = %er v k0, and vy = %Zyey 0,0,
According to the Strassen Theorem (Theorem , there exists a couple of random
variables (X,Y’) on some probability space (€2, 4,P) such that X is distributed
according to vy, and Y according to v, and X = E[Y|X]. Since X is a discrete

random variable,

E[Y1x—,]
E[Y|X] = — " 1x_,, a.s.
xez;( P(X = x)
Therefore, for all x € X,
E[Y1x_,]
r=———"=3 LyK,,,
P(X =x) yezy vy
where K, , : nw%g:y). Hence a = bP with Pj; := Ky, 4,, i,j = 1,...,n. This

proves Item (i), since P is doubly stochastic by construction.
If @ = bP with a doubly stochastic matrix P, then it is easily checked that
S fla) <X f(by) for any convex function f on R so that (i) implies (7).
Finally, according to Birkhoft’s theorem, the extremes points of the set of doubly
stochastic matrices are permutation matrices. Therefore every doubly stochastic
matrix can be written as a convex combination of permutation matrices showing
that (i) and (éi7) are equivalent. O

5.3.3 Geometric aspects of convex ordering and a majoriza-
tion theorem

Contrary to the previous subsections, the results presented here are new. Fix
some vector b = (by, by, ..., by,) of R" with distinct components (for simplicity). We
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will be working with the convex hull of the permutations of b, a polytope we denote
by Perm(b) and defined as

Perm(b) := { Z Aoby, with A, > 0 and Z Ay = 1} )

O'ESn O'ESW,

Such a polytope is often refered to as the Permutahedron generated by b. According
to Rado’s Theorem [5.3.10, Perm(b) = {a € R" : a < b}. Hence, Perm(b) is a subset
of the following affine hyperplane

&y = {33 e R": Zl’l :sz} :b—i‘(c;(],
i=1 i=1
with & = {x e R" : 31 |, x; = 0}.

We will be interested in the faces, facets containing a given face, and normal
vectors to such facets of Perm(b). We need to introduce some notations.

Denote by [n] the set of integers from 1 to n. For S C [n], let vg(b) denote
the vector with the |S| largest components of b in the positions indexed by S (in
decreasing order, say), and the remaining n — |S| lowest components of b in the
other positions indexed by [n] \ S (also in a decreasing order). Also, when S # (),
we denote by Pgs(b) the set that contains the vector vg(b) along with all vectors
obtained by permuting any subset of coordinates of vg(b), as long as the subset is
contained in S or in [n] \ S. (That is, the only permutations that are not allowed
are those that involve elements from both S and [n] \ S). More precisely

Ps(b) := {(vs(b))s, 0 € Sy, such that o(S) = S}

where 0(S) := {0(i),i € S} denotes the image of S by o.

More generally, given a partition S = (51, 52,...,5k) of [n], let vs(b) denote
the vector with the largest |Si| coordinates of b in the positions indexed by S;
(in decreasing order), then the next largest |Ss| coordinates in the positions in-
dexed by Sy and so on (as an illustration, for b = (1,4,5,—2,3,9,6,—5) € RS
and § = (51,5, 53) with S} = {1,2}, Sy = {3,6,7} and S3 = {4,5,8}, we get
vs(b) = (9,6,5,1,—2,4,3,—5) where the italic positions refer to the set S, the
bold positions to the set Sy and the remaining positions to S3). Also, we denote
by Ps(b) the set containing the vector vg(b) along with all vectors obtained by
permuting the coordinates of vs(b) that belong to the same S; :

Ps(b) :=={(vs(b))s, 0 € S, such that for all i,0(S;) = S;}.

Now we recall two geometric definitions/facts from [10].

Fact 1 : A facet of Perm(b) is the convex hull of Pg(b), for some S # 0, [n].

Fact 2 : A face of Perm(b) is the convex hull of Ps(b), for some partition S =
(S1,52,...,Sk) of [n] with k > 3. Furthermore, given a face F' = Conv(Ps(b)),
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there exist exactly k — 1 facets containing F' that are obtained by coalescing
the first and last several S;’s in § : that is, for each 1 < j < k — 1, the facet
F; containing F' can be described by taking the partition [n| = 177 U T with
T1 :SlLJ"'USj, aIldTQZSj+1U"'USk.
The next theorem, which we may call the Majorization Theorem, is a key in-
gredient in the proof of Theorem [5.4.2] It provides a geometric interpretation of
majorization in terms of projection.

Theorem 5.3.11 (Majorization Theorem). Let a,b € R"™, assume that b has distinct

coordinates and that a ¢ Perm(b). Then the following are equivalent :
(i) ¢ € Perm(b) satisfies

a—¢=a—c VeéePerm(b);
(ii) ¢ is the closest point of Perm(b) to a ; that is,

¢i=arg_min (o —cl2).

Moreover the vector ¢ is sorted as a : (a; < a;) = (& < &) , forall i, j.

Let us recall that the orthogonal projection of a point a on the polytope Perm(b)
is the unique ¢ € Perm(b) such that

(a—¢,c—¢) <0, Ve € Perm(b). (5.3.12)

proof. Observe that if Y7, a; # 1, b;, then letting a := a — £(1,1,...,1) with
k=" a;—> " b;, wesee (using (5.3.12))) that the orthogonal projection of a and
a on Perm(b) are equal (to some point we denote by ¢, say), and that a — ¢ < a—c¢
if and only if @ — ¢ < @ — ¢. Therefore we can assume without loss that a and b are
such that > ;a; =37 b;.
We will first prove that (z) implies (i7) which is the easy part of the proof.

(i) = (i1). Let ¢ be the closest point of Perm(b) to a (i.e. ¢ := arg min.cperm)(||a—
c|l2)). Then by (i), a — & < a— ¢, which, by Proposition [5.3.6] (applied to f(z) = x?)
implies that 3%, (a — ¢)? < 3" ,(a — ¢)?. By definition of ¢, this is possible only if
¢=rc.

Next we will prove that (i) implies (¢). For the sake of clarity, we first deal with
the simple case when ¢ lies on a facet of Perm(b), before dealing with the general
case of ¢ being on a face.

(17) = (i). Let ¢ be the closest point of Perm(b) to a. Since Perm(b) is invariant
by permutation, it easily follows from Proposition that the coordinates of ¢
are in the same order as the coordinates of a. Hence, we are left with the proof that
a— ¢ = a—cforall ¢ € Perm(b).

(a) A simple case : ¢ € F for some facet F'. Since ¢ is chosen from Perm(b), and
since we assumed that >, b; = 3, a;, we have >;(a—¢); = 0. Writing o := a—¢ € &,
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suppose that « is perpendicular to the affine subspace ‘H := Hp containing a facet
F, defined by some nonempty subset S of [n|. For all z,y € F, we thus have
(a,# —y) = 0. Choosing v = vg(b) and y = w, obtained by permuting two
coordinates of x whose indices are both in S or both in S (i.e. 7;; = (i) is the
transposition that permutes ¢ and j, with 7,7 € S, or 4,j € S°), one sees that the
coordinates of o are constant on S and S¢. We denote by ag and ag. the values of
a on these sets, which verify kag + (n — k)age = 0 since a € &.
Now (recalling that a = a — ¢) our task is to show that

a=a—(d—¢), forevery ¢ € Perm(b).
This amounts to showing that

a < a—c, forevery csuch that (a,c) <0, and > ¢ =0.

Indeed, on the one hand the choice of ¢ implies, by , that for every ¢ €
Perm(b) (o, — ¢) < 0, and on the other hand, since ¢, ¢ € Perm(b), necessarily

Now (a,¢) < 0 and Y; ¢; = 0 together imply (recall that « is constant on S and
S¢) that

(O./S — aSC)ZCi < 0.
i€S

Let us assume that ag > age. Then denoting by cs = > ;cq¢; and by cge = > ;cq¢ G,
one has c¢g < 0 and cge > 0. Therefore, for any convex function f on R, according
to Jensen’s inequality and by convexity, we get

= _ Yies [las — ) Yiese [lase — )
S

=

o

flag) + (n— k) flase) — f'(as)es — f'(ase)cse
f(ai)u

=

-

s
I
—

where the last inequality comes from the fact that f'(ag)cs+f'(a$)cse = cs(f'(as)—
f'(ase)) < 0. According to Proposition |5.3.6 we conclude that o« < o« — ¢ which is
the expected result.

(b) The general case. Suppose that ¢ lies in a face F' of the polytope. This
face is related to a partition S = (Si,...,5%) of [n], with & > 3. Then «a :=
a—¢ € N(F), where N(F) denotes the normal cone of F'. Recall that the extreme
rays of N(F') are given by the facet directions for the facets containing F'. For all
i € {1,...,n — 1}, let us denote by F; the facet containing F' associated to the
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partition 7; = {S1U...US;; Siz1 U...USk}, 1 <i < k— 1. Consider the vectors
P1,DP2; - - - Pe—1 € & defined by

ki
pi = ls,us,0--us; — 5 [n]

where 17 denotes the 0—1 indicator vector of T', for T' C [n], and k; = |Sy|+- - -+]5i|.
For each i, the vector p; is orthogonal to the facet F;. Moreover, for all ¢ € Perm(b)
one may check that (c,p;) < (v7,p;), with equality on F;. This shows that p; is an
outward normal vector to F;. Therefore N(F) is the conical hull of the p;’s, and so
we may express «, for a suitable choice of \; > 0, as :

o = Z )\i]-SlUSgUmUSi - Ul[n] )

where o = (1/n)[X8F Ml Sh| + 2520 Al Sa| + - -+ + M1 Sk—1]] - In particular, « is
constant on each S; : for all i € 5, o; = (Z’;;} )\p) —o0:=A,.
In order to establish (i), we need to show that
a=a—(c—2¢), VecePerm(b),
or in other words, we need to show that
a=a—d, VdePerm(b) —¢.
We now use again the fact that our choice of ¢ implies that, for all 1 <i < k — 1,
(pi, &) > (pi,c), Ve &€ Perm(b).
This in turn gives the following :
Perm(b) — ¢ C {c¢ : (¢, p;) <0, Vi}.

Thus using N(F)? := {d € &;(d,p;) < 0, Vi} to denote the polar cone, it then
suffices to show that for a (as above),

a=a—d, Vde N(F)".
Now, d € N(F)? implies that

<d, 1SlUSQU"'USj> S 0 and Zdl = O,

therefore denoting Ej = 3cs,0..us, i, for all j € {0,1,...,k}, one has F; <0 and
Ey=FE,=0.

Let f : R — R be a convex function; denoting by f’ its right derivative, the
convexity of f implies that

n k

oSl —di) =Y f(Aj—dy) > ; 1551 f(A;) =D f'(A;)D;,

i=1 j=14€S; j=1
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where D;j = 3cg, d;. Now, using an Abel transform (and the fact that £y = E, = 0),
one gets

k k k—1
Zf/(Aj)Dj - Zf (A )(E Ej 1 Z Aj+1)Ej < O,
=1 j=1 j=1

where the inequality comes from E; < 0, A; > A;;; and the monotonicity of f’.
Therefore, one gets

n k n

Do flai—di) =D 1S5 (Ay) =Y fla),

i—1 j=1 i=1

which proves that a < a—d, thanks to Proposition[5.3.6] as expected. This completes
the proof. O

5.4 Optimal coupling for weak transport costs

In dimension one, it is well known that

To1(a-)+0s(a) (V) = Toy(ay (V[1) + Ty (V|1), (5.4.1)

We obtain this equality by showing that the two optimal weak transport costs
To,(a)(v|1r) and Tp,q.)(v|p) are achieved by a same coupling. This result is well
known for classical transport cost with convex cost function € in dimension one.
Namely, in the case where v has no atom, the map

Tyu=F,'oF,

is the only one non-decreasing and left-continuous function that pushes forward v
onto u, that is to say

/fdu:/foTy,#dy.

Moreover, from the works by Hoeffding, Fréchet and Dall’Aglio [26], 38, 58], we
know that this map achieves the optimal transport of v onto p independently of the
convex cost functions 6 (see also [21]). In other words, it holds

v) = [0(e = Tu(@)]) v(de).

Actually, the expected equality (5.4.1]) follows by combining this statement in di-
mension one with our following main result of this section :

Theorem 5.4.2. Let p,v € P1(R) ; there exists a probability measure 4 dominated
by v in the convexr order, 4 < v, such that for all convex cost function 6 it holds

To(v|p) = To (5, ).

In particular, for any two convex cost functions 0,05, it holds

771914'92(:“7 V) :7—91(”7 V) +T02(M7 V)' (543)



5.4. OPTIMAL COUPLING FOR WEAK TRANSPORT COSTS 113

We will establish first a preliminary result which gives some connection between
T and 7. In the sequel, we denote by Im(p), respectively Im' (1), the set of proba-
bility measures on R which are images of u under some map S : R — R, respectively
some non-decreasing map S, i.e.,

Im(p) = {y € P(R) : 35 : R — R measurable such that v = Suu},
and
Im' () = {y € P(R) : 35 : R — R measurable, non-decreasing, such that v = Syu}.
Proposition 5.4.4. For all probability measures p,v on R, it holds

inf )75(7,#)27-9(V|M)> inf  To(7, p).

y=v,y€lmT(p v, y€lm(p

Remark 5.4.5. Note that when p has no atoms, then Im'(u) = Im(p). If p is
a discrete probability measure, then the two sets may be different. For instance, if
p= 300 + 361, then v = 200 + 301 is in Im(u) but not in Im' (). In the proof
of Theorem below, we will use Proposition with  being the uniform
distribution on n distinct points for which it is clear that Tm'(p) = Im(p).

proof. First we will prove that To(v|n) > infi<y e To(7, ). To that aim,
denote by w(dzdy) = p(z,dy)u(dz) some coupling between p and v and set
S(x) = [yp(z,dy), v € R. Clearly Sgp € Im(u). Moreover if f : R — R is
some convex function, by Jensen’s inequality, it holds

[ 1@ Sentda) = [ £ ( [yptw.dy) plde) < [[ 1) pla.dy)ntda) = [ 1) v(dy)

so that Syp < v. Therefore,

J0(z= [up@.a) nide) = [ 0x = S@) u(de) > TlSpm) > _ it Tolv.)
from which the claim follows by taking the infimum over p.

Now we turn to the proof of the inequality Ty(v|u) < inf <, cpnt To(v, 1)-
Assume that 7 < v and that v = Sy for some non-decreasing map S. According
to Strassen’s theorem, there exists a coupling m; with first marginal v and second
marginal v such that m(dzdy) = pi(x,dy)y(dx) and = = [pypi(z,dy), v almost
everywhere. For all x € R, define the following probability measure p(x,dy) :=
p1(S(x), dy). Then for all bounded continuous function f, it holds

J] fwipla.dy) utdz) = [ Fp(S().dy) ud)
= //f(y)pl(fﬁ,dy)v(dx) = /f(y)V(dy)-
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Thus the coupling 7(dzdy) = p(z, dy)p(dz) has p as first marginal and v as second
marginal. Moreover, by definition of p; and p, u almost everywhere, it holds

[upte,dy) = [ypi(S(z).dy) = S(a).

Since S is non-decreasing, it realizes the optimal transport between p and v for the
classical transport cost Ty and so it follows that

Torn) = [ 000z — SE@)utdr) = [0z — [ yp(e dy)utdr) > Towln)
which achieves the proof by taking the infimum over ~. ]

We are now in a position to prove Theorem

Proof of Theorem[5.4.3. The proof of the first part of Theorem is divided into
two steps. In the first step we will deal with uniform discrete measures on n points,
while in the second step we will use an approximation argument in order to reach
any measures.

Step 1. We first deal with

12 12
= — ) 0, d == 0,
% n; i an 14 n; b;
with a7 < as < ... < a, and by < by < ... < b,. Set a := (ay,...,a,) and

b:= (b1,...,byn). According to Theorem [5.3.11] there exists some é € Perm(b) such
that a — ¢ < a — ¢, for all ¢ € Perm(b). Moreover the coordinates of ¢ satisfy
& < &4q. Set A =15 ' 1 0z, and observe that v dominates 4 for the convex order
and 4 € Im"(p). (Recall the definition from the beginning of this section.)
Now for any v := £ 37, 4., € Im' (1) with ¢; < ¢i41 and for any convex cost
function 6, it holds (since the coordinates are non-decreasing)
! > 6(la; — )
iz

In particular

1 n
=—> 0(la; —¢]) < inf 29 la; — ¢;|) (5.4.6)
n =1

cePerm(b) n;

A probability v such that v < v,y € Im'(x) is of the form ~ = Ly b, with
¢i < ¢y1 and ¢ = (c1,...,¢,) € Perm(b), and for such a c, it holds £ >, 6(|a; —
¢i|) = To(7, 1) Therefore, the latter implies

To(y,p) < inf  To(v, 1) = To(v|p)

y=v,yelm’ ()
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where the last equality follows from Proposition [5.4.4] and the fact that for such
a distribution s, it holds Im(y) = Im'(y) (see Remark |5.4.5). Since obviously
To(v|u) < To(#, 1), we conclude that T(4, 1) = Te(v|p) as expected.

Step 2. In the second step we deal with the general case using an approximation
argument.

Let 1 and v be two elements of P;(R). By assumption, [ |z|u(dr) < oo and
[ |z v(dz) < oo, hence, according to the de la Vallée-Poussin Theorem (see e.g. [18|
Theorem 4.5.9]), there exists an increasing convex function J : RT — R™ such that
B(t)/t — oo as t — oo and such that [ 5(|z]) u(dx) < oo and [ B(|x]) v(dx) < 0.

Next we will construct discrete approximations of u and v. According to
Varadarajan’s theorem (see e.g. [30, Theorem 11.4.11]), if X; is an i.i.d sequence of
law 1, then, with probability 1, the empirical measure L := % » 4 0x, converges

weakly to p. On the other hand, according to the strong law of large numbers, with
probability 1, £ 3" | |X;| — [|z|u(dz) as n — oo. Let us take (;);>1, a positive

realization of these events and set u,, = % A 51(@), where x(ln) < x(Qn) <...< x;")
denotes the increasing re-ordering of the vector (x1,xs,...,x,). Then the sequence

fy, converges weakly to pand [ |z| p,(dz) — [|z| u(dx). According to [99, Theorem
6.9], this is equivalent to the convergence of the W, distance : Wy (u,, 1) — 0 as
n — 00. Note that one can assume that the points a:z(") are distinct. Indeed, if this
is not the case, then letting @,@ = xl(-n) +1/n? one obtains distinct points and it is
not difficult to check that fi, = + 30", d.m still weakly converges to u (for instance

the W distance between p,, and fi,, is easily bounded from above by (n+1)/(2n?)).
The same argument yields a sequence v,, = %Z?:l (Sy@ with y§”) < yfﬁl converging
to v in the W sense. It is not difficult to check (in\Zfoking the strong law of large
numbers again) that one can further impose that [ G(|x|) v, (dx) — [ 5(|z|) v(dz),
as n — oo.

For all n > 1, one applies the result proved in the first step : there exists a
unique probability measure 4,, < v, such that

?G(anlun) = To(Yn» tn),

for all convex cost functions . Let us show that one can extract from 4, a
subsequence converging to some 4 in P;(R) for the W) distance. By construc-
tion [ B(|z|) vn(dz) — [B(Jz])v(dx) and so M = sup,, [ B(|z|) va(dx) is fi-
nite. Since 4, = v, and since the function z — [(|z|) is convex, it thus holds
I B(x|) yu(dz) < [ B(|z]) vo(dx) < M. In particular, setting ¢(R) = infi g 5(t)/t,
R > 0, Markov’s inequality easily implies that

A [ Bl valdr) _ M
[ o1 n(0n) « SRR <
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Consider 4, defined by Z%:(x) = fl—&ji\i‘?(dw)' Then it holds,
2M

(R, R]°) < —, VR>1,
sup n | 1) R)

and so the sequence 7, is tight. Therefore, according to the Prokhorov Theorem,
extracting a subsequence if necessary, one can assume that 7, converges to some
7 for the weak topology. Extracting yet another subsequence if necessary, one can
also assume that [(1 + |z|)7y,(dz) converges to some number Z > 0. The weak
convergence of 4, to 4 means that [ ¢ d¥, — [¢dy for all bounded continuous ¢,
which means that

[+ l2)p(@) du(dn) > [+ [2l)p(@) 3(do),

where (dz) = %le A(dx) € P1(R). Invoking again [99, Theorem 6.9], this implies
An — 4 as n — oo for the Wi distance.

Now we will check that 4 is such that To(v|u) = Tg(4, p) for all convex cost
functions 6 : R* — R™. First assume that 6 is Lipschitz, and denote by Ly its Lips-
chitz constant. According to [50, Theorem 2.11], the following Kantorovich duality
formula holds

Tovalin) = sup { [ Que(w) valde) = [ o(u) pala) }

where the supremum is taken over the set of convex functions ¢ bounded from below,
with Qpp(x) := infyer{e(y) + 6(|x —y|)}, x € R. Define ¢(y) := sup,cp{Qop(z) —
O(|]z — y|)}. Then it is easily checked that ¢ < ¢, ¢ is bounded from below and
Qop = Q. Moreover, being a supremum of convex and Ly-Lipschitz functions,
the function ¢ is also convex and Lg-Lipschitz. Therefore, the supremum in the
duality formula above can be further restricted to the class of convex functions
which are Lg-Lipschitz and bounded from below. Using the fact that Wi (v,,v) =
sup{ [ f dv, — [ f dv} where the supremum runs over 1-Lipschitz function and the
fact that Qe is Lg-Lipschitz (being an infimum of such functions), we easily get
the following inequality

To(valitn) — To(vIi)] < LeWi(vn,v) + LeWi(ptn, ).

A similar (but simpler reasoning) based on the usual Kantorovich duality for 7y
yields the inequality

|%(&n>ﬂn) - 75(&7:“” < Lewl(&nvﬁ/) + LGWl(l“UM)‘

Passing to the limit as n — oo in the identity To(Wnltn) = To(An, itn), we end up
with To(vle) = To(5, ).

Now it remains to extend this identity to general convex functions # not neces-
sarily Lipschitz. Let 6 : RT — R™ be a convex cost function (such that 6(0) = 0)
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and for all n > 1, let 6,, be the convex cost function defined by 6,(z) = 6(z), if
xz € [0,n] and 0,(x) = O(n) + 0'(n)(z —n), if © > n, where §" denotes the right
derivative of 6. It is easily seen that 6, is Lipschitz and that Qg ¢ converges to Qg
monotonically as n — oo, for any function ¢ bounded from below. Therefore, the
monotone convergence theorem implies that for any probability measure ~, it holds
[ Qo dy = sup,»; | Qo, ¢ dy. We deduce from this that To(v|p) = sup,=; T, (V|1)
and Tg(Y|p) = sup,>1 To, (4, ). Since Ty, (v|p) = To, (%, 1) for all n > 1, this ends
the proof of the first part of the theorem i.e. that To(v|u) = To(Y|p1)).

From the first part of the theorem we conclude that there exists some 4 € P;(R)
such that Ty(v|p) = Tg(4, i) for the three cost functions § = 6y, 6, 6 +05. The result
then follows from the well-known additivity of 7y in dimension one : Ty, 19, (5, 1) =
To, (3, 1) + To, (4, ). This ends the proof of the theorem. ]

5.5 Cost function vanishing on a neighorhood of
the origin

In this section, we treat the particular case where the cost function vanishes on a
neighborhood of 0. N.Gozlan has obtained a characterization of classical transport-
entropy inequalities for cost functions vanishing at zero. This section completes this
result by extending it to weak transport-entropy inequalities for the same type of
cost functions.

Theorem 5.5.1. Let pp € Pi(R) and f: RT — R™ be a convex cost function such
that {t € R™ : B(t) = 0} = [0,t,], where t, > 0 is some positive constant. The
following propositions are equivalent :

1. There is a > 0 such that p satisfies the transport-entropy inequality T(B(a-)).

2. There is a’ > 0 such that p satisfies the weak transport-entropy inequality
T(B(a")).

3. There are b > 0 and K > 0 such that max(K™*(b), K~ (b)) < K, where

1 [e'e)
K+ () = / Bbw=2)) 1, (duy),
(®) igﬁ p(z, 00) Ju ¢ pulclu)

and

1
K~ (b) = sup

TG
sy [me p(du),

where m is a median of p. (Here we use the convention 0/0 = 0.)
4. There is d > 0 such that

Uu(u) = Up(v)] < 587 (lu—v]),  Vu#veR

Ul

(Note that B~ is well defined on (0,00).)
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; and 4 implies 2 with ' = d%fi‘;@).

In particular, 2 implies 4 with d = o’ m

Proof of Theorem[5.5.1 The equivalence between the assertions 1, 3 and 4 was first
proved in [43] (see Theorem 2.2). Let us complete the proof of Theorem by
showing that 1 = 2 = 3.

First of all, it follows easily from Jensen inequality that

Tota) (1) 2 max (T (V1) Toa (1) ) -

Therefore 1 implies 2 with @’ = a.

Now let us show that 2 implies 3. Suppose that u satisfies T(3(a-)) for some
a > 0. According to Point 4 of Lemma [5.2.1] for all convex function g : R — R
bounded from below, it holds

[eso@ydu [ e an<t,
where

Qf (@) = mf{/(y) +28(aly - 21/2)}.

Consider the convex function f, which equals to 0 on (—oo,x] and co otherwise,

then Qf(y) =0 on (—oo,z| and Qf(y) = 28(a(y — x)/2) on (x,00). Applying the
inequality above to f, thus yields

(2,00)

(m—oo,x] ; emwv%(dy)) u(—00, ] < 1.

Considering x > m yields that K (a/2) < 3. One proves similarly that K~ (a/2) <
3. This shows that 2 implies 3 with b = a/2 and K = 3. O

5.6 A transport form of the convex Poincaré in-
equality
This section is devoted to the proof of following theorem.

Theorem 5.6.1. Let i be a probability measure on R, then the following assertions
are equivalent :

(a) There exists h > 0 such that

sup|[Uy(z + 1) — U,(z)] < h.

zeR

(b) There exists C' > 0 such that for all convex function f on R, u satisfies

Var,(f) < C’/Rf’2 dp.
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(¢) There exist D,l, > 0 such that the probability p satisfies the transport inequal-
ities
Talply) < H(vlp), Vv e Pi(R),
and
Talln) < H@lp), Vv e Py(R),

for the function o defined by

2 .
_ ) 35 if lu| < 1,D
a(u) { Llu|—2D/2  if ju| > l,D

Moreover the constants are related as follows :
~ (a) = (c¢) with D =2Kh? and l, = c/h,
— (a) = (b) with C = K'h?,
— (b) = (a) with h = K"\/h,
- (¢) = (b) with C = D,
where ¢, K, K" and K" are absolute constants.

The equivalence (a) < (b) goes back to Bobkov and Gotze [12]. Hence, the
proof of theorem completes the picture by showing that (a)/(b) also characterize
the measures satisfying a weak transport-entropy inequality with a cost function
which is quadratic near zero and then linear (like #1). The dependence between the
constants in the implication (b) = (a) is not given for technical reasons. Indeed, the
proof relies on an argument from [12] that uses a non trivial proof from [14] where
one loses the explicit dependence on the constants.

We indicate that during the preparation of this work, we learned that this char-
acterization of convex Poincaré inequality in terms of transport-entropy inequality
has also been obtained by Feldheim, Marsiglietti, Nayar and Wang in their recent
paper [37].

The proof of Theorem [5.6.1] is given in section It uses independent results
like a new discrete logarithmic Sobolev inequality for the exponential measure 7
(see Lemma [5.6.9)). By transportation technics, this logarithmic-Sobolev inequality
provides logarithmic-Sobolev inequalities restricted to the class of convex or concave
functions for measures satisfying the condition (a) (see Corollary [5.6.3).

Then the weak transport-entropy inequalities of item (c¢) are obtained in their
dual forms, involving infimum convolution operators (see Lemmal5.2.1). The method
to derive transport-entropy inequalities from logarithmic- Sobolev inequalities is
based on classical arguments involving the infimum convolution operator as a so-
lution of the Hamilton-Jacobi equation. This approach is due to [I1] and has been
also generalized in [47, [50].

Our strategy is to prove a modified logarithmic Sobolev inequality for the ex-
ponential probability measure 7 and then, using a transport argument, a modified
logarithmic Sobolev inequality for general u (satisfying the assumption of Item (a))
restricted to convex or concave Lipschitz functions. Finally, following the well-known
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Hamilton-Jacobi interpolation technique of [I1], the desired transport inequalities
will follow in their dual forms.
We need some notations. Given a convex or concave function g: R — R, we set

Vgl(z) := minf|0g" () + (1 — 6)g' (x)];6 € [0, 1]}, (5.6.2)

where ¢’ and ¢/, denote the left and right derivatives of g (which are well-defined
everywhere). In particular, if ¢ is convex

|9 ()| if g ()

[Vgl(z) =4 0 if g’ ()
g (x) if g’ (v)

WA N
S O O
N
Q
&
s

and if ¢ is concave
9" (z)] if g" ()
Vgl(x) =4 0 if g/, ()
g (x) it g\ (z)
The following result is one of the key ingredients in the proof of Theorem [5.6.1]
Recall the definition of U, from the introduction.

\AVAW/A

0
0< ¢ (x)
0.

Proposition 5.6.3. Let pu be a probability measure on R. Assume that
sup,ep|Uu(z + 1) — Uy(z)] < b for some h > 0. Set K := 2740 and c := 1/(10v/2).
Then, for all convex or concave and l-Lipschitz functions g with | < c¢/h, it holds

Ent,(e?) < Kh? / Vg(2) %69 u(dz). (5.6.4)
R

The proof of Proposition [5.6.3]is postponed to the end of this section.

Proof of Theorem[5.6.1 As already mentioned above, from [I2] we conclude that
Item (i) is equivalent to Item (i7). In order to make the dependency of the constants
explicit in the implication (i) = (4i), one can use a well-known expansion argument :
apply to ef and take the limit € — 0, see e.g. [5]. On the other hand, using a
similar expansion argument, it is easy to prove that Item (iii) implies Item (i7) with
C =2D : apply to g = ef and take the limit ¢ — 0, see e.g. [44], 51]. Hence,
we are left with the proof of (i) implies (éi7) which closely follows the Hamilton-
Jacobi semi-group approach introduced in [I1].

Let u be a probability measure on the line and assume that Item (¢) of Theorem
holds. According to Proposition [5.6.3] for any convex or concave differentiable
function g which is [-Lipschitz with [ < ¢/h :=[,, it holds

Ent,(e?) < KhQ/ IVg(z)|?e?™ pu(dz), (5.6.5)
R

with K = 2740 and ¢ = 1/(10+/2). It is easy to check that the latter is equivalent
to
Ent,(¢?) < [ a*(IVgl)e? dp, (5.6.6)
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for all convex or concave g: R — R with

. Kh*v? if | <1,
a*(v) = Slip{uv —a(u)} = { oo " ;v; oL

‘ LQ if |u] < 20, Kh?
the convex conjugate of a(u) := { Ll — KR if Iui > 20, Kh?

Now, introduce the inf-convolution operators @, for ¢t € (0, 1], defined by

Qf@) =t {fw+ta ()} weR te]

which makes sense for instance for any Lipschitz function f or for any function f
bounded from below. For simplicity denote by F the set of functions f: R — R
that are [-Lipschitz and concave, | < [,, or convex and bounded below. Then, Q)
satisfies the following technical properties :

(a) If f is convex, then Q;f is convex.

(b) If f is concave and Lipschitz, then @, f is concave.
(c) If f € F, then Q.f is l,-Lipschitz.
(d) If f € F, then the function u(t,x) = Q.f(z) satisfies the following

Hamilton-Jacobi equation

dfu(t, x)+a*(|V ul)(t,z) =0, vt € (0,1], Vo € R, (5.6.7)
+

[u(ty)—u(t,z)] -

where -4 is the right time-derivative and |V~ u(t, z)| = limsup, _,, ol

dt
(where as usual [X]- := max(—X,0) denotes the negative part).
Item (a) is easy to check and is a general fact about infimum convolution of two
convex functions (f and «). Item (b) follows from the fact that, after change of
variables, Q. f(z) = inf, {f(x —u) +ta (%)} so that Q;f is an infimum of concave

functions and is therefore also concave. As for Item (c¢) we observe that z — ta (%)

is [,-Lipschitz for any y so that @, f is also [,-Lipschitz as an infimum of [,-Lipschitz
functions. A proof of Item (d) can be found in [47] or [2]. We observe that the
conclusions of Item (¢) — (d) hold in much more general settings.

With these properties and definitions in hand, let f € F and (following [I1])
define

1
F(t) := : log </ @t du) ; t e (0,1].
R

The function F' is right differentiable at every point ¢ > 0 (thanks to the above
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technical properties of @y, see e.g. [47] for details) and it holds

d 11 d
L pt)y=———= (Ent, (e t2/ @ tQif g
TR thRethfd,u< nty (e9/) + o\, @) e dn

1 1 QL f 2,2 - 2,tQuf
= g pamrgy (B (447) = K2 [ [V Quf e dy)

2
O (fiaureran- [ 5o <o
where the second equality follows from , the first inequality from
applied to the function g = tQ, f (which is convex or concave and tl,-Lipschitz) and
the last inequality from the fact that for a convex or concave function g, |Vg| <
|V~g| (we recall that |Vg]| is defined in (5.6.2)).

Thus the function F' is non-increasing and satisfies F'(1) < limy_,o F'(t) = [ fdpu.
In other words,

/tef dp < eJ fan VfeF. (5.6.8)

Now according to Item (iii) of Lemma one concludes (on the one hand) that
u satisfies the transport-entropy inequality T («) : To(u|v) < H(v|p), for all v €
Pi(R).

On the other hand, applying to f = —Q1g with g convex and bounded
from below (so that f is concave and [,-Lipschitz) yields to eJ Qugdn [ e (=@19) g

1. Since @Q1(—Q19) = —g we end up with
elegd“/e*g dp <1,

for all g convex and bounded from below. According to Item (i7) of Lemma this
implies that u satisfies the transport-entropy inequality TJr(a) cTalvin) < H(v|p),
for all v € P;(R), which completes the proof. ]

The end of the section is dedicated to the proof of Proposition [5.6.3
Proof fo Proposition[5.6.3 Let K and ¢ be defined by Lemma below. We may

deal first with convex functions ¢g and divide the proof into three different (sub-
)cases : g monotone (non-decreasing and then non-increasing), and g arbitrary.
Assume first that g is convex non-decreasing and [-Lipschitz with [ < ¢/h. Set
f = goU, (recall that U, is defined in the introduction). Then, since g is non-
decreasing, and since U,(z — 1) < U,(z) — h by assumption, for all € R, it holds

f(@) = f(z = 1) < g(Uu@) — gUula) ~ ) <Ih <e,  VreR.
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Therefore, since 1 is the image of 7 under the map U, Lemma“ apply (5.6.10 m
to f) and the latter guarantee that

Ent,(e?) = Ent,( K/ (x — 1)) /@1 (dx)
<K / 9(U, (@) — g(U,(x) - h>>2eg<U“<x>>T<dx>
R
= K [ (9(2) = gla— ) #pu(da) < KR [ |Vgla) e p(da)
R R
where the last inequality is due to the fact that ¢ is convex and non-decreasing
and therefore satisfies 0 < g(x) — g(z — h) < ¢"(x)h = |Vg(x)|h. As a conclusion
we proved (5.6.4) for all convex non-decreasing and [-Lipschitz functions g with
I <c/h.
Now suppose that g is convex, non-increasing and [-Lipschitz with [ < ¢/h and

set f(xz) = g(U,(—=)). The function f is non-decreasing and, since U,(—z + 1) >
U,(—x) + h by assumption, satisfies

f@) = fl@ = 1) = g(Uu(=2)) = g(Up(=2 + 1)) < g(Up(=2)) = g(Uu(—2) + h) < ¢

Similarly to the previous lines, Lemma implies that

Ent,(¢9) = Ent, (e/) < K / — g(Uu(~2 +1)))? ?Vr=Dr(dz)
/ (—2)) — g(Uu(=2) + h))2 e9Vn= 7 (dz)
= K [ (9(2) = gla+ )/ p(dr) < KR [ [Vg(a) e pu(da)

where we used the symmetry of 7 and that 0 < g(z) — g(x + h) < ¢ (z)(=h) =
|Vg(z)|h. Therefore we proved for all convex non-increasing and [-Lipschitz
functions g with [ < ¢/h.

Finally, consider an arbitrary convex and [-Lipschitz function g with [ < ¢/h and
assume without loss of generality that g is not monotone. Being convex, there exists
some a € R such that g restricted to (—o00,a] is non-increasing and g restricted
to [a,00) is non-decreasing. Subtracting g(a) if necessary, one can further assume
that g(a) = 0 since is invariant by the change of function ¢ — g + C (for
any constant C'). Set g1 = gl(_o0,q) and g2 = gl(40)- The functions g; and g, are
convex, monotone and [-Lipschitz. Therefore, according to the two previous sub-
cases, it holds

a +oo
Ent,(e?') < Kh2/ IVg(2)|?e9 u(dz) and Ent,(e%2) < Kh2/ |Vg(x)[2e9™ p(dz).
So what remains to prove is the following sub-additivity property of the entropy

functional
Ent,(e”79) < Ent,(e”) + Ent,,(e),
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which, since [ geddu = [ gie9'du + [ goe9dyu, amounts to proving that

/egldulog </ egld,u> —i—/edeulog (/ ede,u) < /eg dplog (/ egd,u> :

Setting A = [e%'duy — 1, B = [e%du — 1 and X = [e9du and observing that
A+ B+ 1= X the latter is equivalent to proving that

(A+1)log(A+1)+ (B+1)log(B+1) < Xlog X,

which follows from the sub-additivity property of the convex function ®: x — (z +
1)log(z 4+ 1) on [0, 00), that satisfies ®(0) = 0. This completes the proof when g is
convex.

The case g concave follows the same lines (use (5.6.11)) instead of (5.6.10))).
Details are left to the reader. O

In the proof of Proposition we used the following lemma which is a (discrete)
variant of a result by Bobkov and Ledoux [16] and an entropic counterpart of a result
(involving the variance) by Bobkov and Gotze (see [12, Lemma 4.8]).

Lemma 5.6.9. For all non-decreasing function f: R — R with f(z) — f(r — 1) <
1/(10v/2), © € R, it holds
Ent, ( 2740/ flo— 1)) edr. (5.6.10)

and
Ent, (e/) < 2740 /IR (f(z +1) — f(x))* e dr. (5.6.11)

proof. Let 7 be the exponential probability measure on R* : 77 (dz) = €1y ) d.
We shall use the following fact, borrowed from [12, Lemma 4.7] (with a = 0 and
h = 1 so that the constant c(a, h) appearing in [12] can be explicitly bounded by
1/200) : for all f: [~1,00) — R non-decreasing and satisfying f(0) = 0, it holds

/ F2dr < 200 / (f(z) — f(z —1))2dr* (2). (5.6.12)
We will first prove ((5.6.10]). Since ([5.6.10|) is invariant by the change of function

J — f + C for any constant C, we may assume without loss of generality that
f(0) =0. Set f(y) == —f(—vy), y € R and observe that f is non-decreasing. Since
ulogu > u — 1 for all u > 0, one has

Ent., ( </fe +1d7'_/</ tfe tfdt)dT
(s (e

1 1 ~
< [refart+ g [ Part, (5.6.13)



5.6. A TRANSPORT FORM OF THE CONVEX POINCARE INEQUALITY125

where the last inequality comes from the fact both f and f are non-negative on R*.

Now suppose that the function f is such that f(y) — f(y — 1) < c for all y € R and

some ¢ € (0,1). Our aim is to bound each term in the right hand side of the latter.
By applied to the function f , one has

[ Part <20 [(7w) - fl - 0 0) = 27 () = Fly =102 ar )

e (LT@GEW) — Fu =DV A W)\ 150y F— 1n2ed® gt
=20 p( J(f(y) = fly = 1))?dr*(y) )ﬂf(y) =1 S

v () — (f (W) ~f(y=1))* v s . i
where we set 2% (y) = TP () and we used Jensen’s inequality to guar

antee that 1/fe_fd1/ < e fav. By Cauchy-Schwarz’ inequality and using (|5.6.12))
again, we get

[ )~ Fo - 0ar ) < ([~ Fo—0)tart ) ([ Par) "
2000/(f(y) — fly—1)%drt(y).

It finally follows that
/ Pdrt < 200V / (Fly) — Fly — 1)2e7® drt(y)

= 2000 [* (f(y-+ 1)~ f(o)e/ Vv dy

= 2001 [ (7(y)  fly — 1)/ Vev dy

—00

<400V [ (f(y) — fly - )P dr(y)

—00

where in the last line we used that e¥/(e™¥/2) < 2¢? for all y < 1

Next we deal with the first term in the right hand side of . Our aim
is to apply to g = fef/?. Observe that, since f is non-decreasing, f(x) >
f(=1) > —c+ f(0) = —c > —1 so that, since  — xe*/? is non-increasing on
[—2,00) we are guaranteed that ¢ is non-decreasing on [—1,00) and therefore that
we can apply to g. Applying to g = fe//? and using the inequality

b
0 < be?? — qe*? < (b—a)eb/2+§(b—a)eb/2, —2<a<hb,

we get
Bi= [ frefart <200 [ (1) ~ sy - 1)ef<y—1>)2 dr*(y)
< 400/(f(y) — fly=1))/ W drt(y) + 100/f — fly—1)*/ W dr(y)

< 400/(f(y) ~ fly = 1))2/® drt(y) + 10062 B.
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Therefore, provided ¢ < 1/10 we end up with B < 400/(1 — 100¢?) [(f(y) — f(y —
1))%2e/®) dr+(y). Hence, plugging the previous two bounds into and choosing
¢ = 1/4/200, Inequality follows with the better constant 939 in factor of
the right hand side.

To obtain (5.6.11)) from (5.6.10f), it suffices to observe that, by a simple change

of variables

e_‘y+1|

JUw) = =02V dr(y) = [(fla+1) = f@)?e/ D —dy
<ot [ (fa+1) = f(@))2e ) dr(a)

and that 939e“™! < 2740 for ¢ = 1/4/200. This ends the proof. O

5.7 Characterisation of weak transport inequali-
ties

The main result of this section is the following characterization of the transport
inequalities Ty associated to convex cost functions 6 quadratic near 0.

Theorem 5.7.1. Let p € Pi(R) and 6 : Rt — R be a convex cost function
such that 0(t) = t* for all t < t,, for some t, > 0. The following propositions are
equivalent :

i) There exists a > 0 such that p satisfies T(0(a-)).
i1) There ezists b such that for all u > 0,

0 (u+t2).

S

sup (Un(x +u) = Upu(z)) <

Moreover, constants are related as follows : i) implies 1i) with b = ak; and i)
implies 1), with a = bk, where k1 and ke are two constants depending only on 6.
More precisely,

to
"7 801 (log(3) + £2)
and
1 . to max((cvVK)/ty; 1)
Ko = — min : .
2 071 (2+183)" 2VKO-1(1+12)

Let A, denote the modulus of continuity of U, defined by
Ay(h) =sup{U,(z +u) —U,(z),z € R,0<u<h}, h=0.

The condition i) asserts that

A (h) < 07 (h+12).
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Therefore A, is bounded around zero and A, (h) goes not necessarily to zero as h
goes to zero. This is one of the main differences with the conditions given in [43] to
characterize the measure satisfying a usual transport-entropy T(6). Actually if the
measure p is discrete and not a Dirac measure, the support of p is not connected
and there exist a < b with a and b in the support of p such that u(]a,b[) = 0. In
that case, we may easily check that for all h > 0,

b—a < Au(h).

This show that in discrete setting lim,_,o A, (h) > 0.
Let us briefly give the main ideas of this proof.
The weak transport-entropy equality ¢) follows from condition i) as follows;

using equality ([5.4.1]), we get that
Tota) (V1) < Tos(a) WI1) + Topay (v]p) < 2H(v|p),

for a good choice of the constant a, by relating the condition i), either to a
weak transport-entropy inequality with the cost function 6y(a-), either to a weak
transport-entropy inequality with the cost function 6;(a ).

Proof of Theorem[5.7.1 Let 6 : Rt — R* be a convex cost function such that
6(t) = t* on [0,1,] for some t, > 0. Let us define 0,(t) = t* on [0,t,] and 0(t) =
2tt, — t2 on [t,, +00) and O,(t) = [0(t) — t?],. Note that 6; and 6, are both convex
and that 6y vanishes on [0,%,] and that max(6;,6s) < 6 < 01 + 6.

First assume that y satisfies the weak transport-entropy inequality T(6(a - )) for
some a > 0 (i.e. Item (i) of Theorem [5.7.1)). Then, since 6 > 0, it clearly satisfies
T(6(a-)). According to Theorem e mapping U, sending the exponential
measure on  satisfies the condition :

supUy,(x +u) — Uy(z) < 392 (u), Yu > 0, (5.7.2)
z€R
with b = ary, where r; = t,/(805"(log3)). Since ;' (u) = 0~ (u + t2) this proves
Item (ii) of Theorem with the announced dependency between the constants.

Now assume that p satisfies Item (ii) of Theorem or equivalently ((5.7.2))
for some b > 0. Recall that we set, in Theorem |5.6.1} x := 5480 and ¢ := 1/(10v/2).

Then, observe that, plugging v = 1 into (5.7.2) and using Theorem [5.6.1, one
concludes that p satisfies T(a) with a defined by a(u) = a(u/v2D), with D =

k(071 (1 +12))%  and
() v? if |v] < cy/K/2 v? if |v] < 4/137/10
a\v) = 2 =

eVElv| = SEif [u] > ¢y/K/2 2v/137|v] — 5 if |u| > ¢,/137/10.

It is not difficult to check that a compares to #,. More precisely, for all v € R, it

holds
c\/K/2 \/137/10
a(v) = 0, (max (t/’ 1) |v|) =0, (maX (t/’ 1) |v|) :

o e}
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Therefore p1 satisfies T(6;(a) -)), and by monotonicity T(#;(a; -)) with

- (, /137/10 1)

to ’

max((c,/;@/?)/to;l)b 1 max(1,t,)
ay = = >

! V2rO71(1 + 12) 4v/6850-1(1 +2) ~ 105t,0-1(1 +12)
On the other hand, according to Theorem m, pt also satisfies T(fa(az - )), with ay =
Wl). Letting a = min(ay, az), one concludes that u satisfies both T(6;(a -)) and

T(03(a-)). Hence, since O(at) < 01 (at) + 02(at) and according to (5.4.1), it holds
To(a-)(v[1)

b=:a;.

< %1(a')+92(a-)(1/‘:u) = %1(a-)(V’M) + %2(a-)(”|ﬂ)

< 2H(v|p),

and so p satisfies T+(%9(a~)). By convexity of 6 and since 6(0) = 0, it holds
$0(2at) > 6(at), and so p satisfies T+(9((a/2) -)). Finally we observe that

max(1,t,)  105t, < b min(1,¢,)
O (1+12)" 071 (2+12) ) 7 21060-1(2 + t2)

= —— min = /in

a

2 210
so that, by monotonicity, u satisfies T+(8(@b~)). The same reasoning yields the
conclusion that yu satisfies T (k2b-)), which completes the proof. O

5.8 Characterisation of convex modified log-
Sobolev inequalities

The goal of this section is to characterize the convex modified log-Sobolev in-
equality. The main theorem is the following :

Theorem 5.8.1. Let pu be a probability measure on R. The following conditions are
equivalent.
(i) For all convex functions ¢ : R — R, there exists C' > 0 such that the modified
log-Sobolev inequality holds

Ent,(e?) < C/ ©e?dy (CmLS)
R

for all convex functions ¢ : R — R.
(ii) There exist a,b > 0 such that for all h > 0,

supU,(x + h) — U,(z) < Va+bh. (5.8.2)
z€R
In the result above we did not keep track of the constants, in order not to overload
the presentation. Let us simply mention that the relation between the constants C| a
and b can be made explicit.
One of the key idea is to use the equivalence between CmLS and T, from [50]
recalled below :
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Theorem 5.8.3. The following assertions are equivalent :
(i) There exists C > 0 such that weak transport inequality T (C') holds.
(17) There exists D > 0 such that for all convex functions v, it holds

1
or{%)ancon{s fou)
(1ii) There exists E > 0 such that the modified log-Sobolev inequality holds
Ent,(e?) < E/ ©e?du (CmLS)
R
for all convex functions ¢ : R — R.

Now combining with Theorem [5.7.1] one has

(5.8.2) & T, = T, < CmLS.
Therefore, we only need to prove T, = (5.8.2).
We begin with the following lemma

Lemma 5.8.4. If the modified log-Sobolev inequality for convex functions (CmLS)
holds, then there exists some constant ¢ such that

M(;oo> "= utde) < c

for 0 < z < sup Supp(u).

proof. The modified log-Sobolev inequality implies the Poincaré inequality for
convex functions. It follows (from [I2]) that there exist a,b > 0 such that
Ulz+h)—Uy(z) <a+bhforzeR, h>0.

Recall that U, = F Yo F,, where F), is the generalized inverse of F, and denote
by V, = F-!'o F,. Even if U, is not necessarily invertible (if p is discrete for
instance), the following holds for all z :

U, (2, 00)) = (Vi(2), 00),
and
U,oV,(x) < x.
Therefore, letting , it holds
1
iz, 00)

0o 9 B 1 0 2
/I (u—z)*p(dr) = AR /Vﬂ(gc) (Uy(u) - x) 7(du)

< @ . U,(uw)—U,oV,(x))e “du
Ly (Unl0) = Ui V(o))

0o 2
< / a+blu—V,(x e~ (WVul@) gy
b (a4 0= V(@)

= /Oo(a + bt)?etdt < oo,
0
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Proof of the theorem. Assume that the convex modified log-Sobolev inequality holds
for p. Then the weak transport entropy inequality T, . Equivalently, according to
Theorem [5.8.3] it holds for some D > 0

(/Rexp (5Qf) d,u)DeXp(—/Rfd,u) <1, (5.8.5)

for all convex Lipschitz function f : R — R bounded from below, where Qf(t) =
infyer{f(y) + (t — y)*}. Fix > 0 and consider the function f(¢) = [t — z]%. Then
Qf(t)=0ift <z Fort > x,

QF(t) = i {ly — a2 + (¢ — gy = 220

yER 2

Hence the dual formulation (5.8.5)) indicates that
p(=o0.2) + [~ exp (5(t = 2)?)dult) = [ exp (5Qf) du
< exp (ll)/Rfd,u) = exp (]1)/ (t — a:)Q,u(dt)) (5.8.6)
By Lemma there exists ¢ > 0 such that [°(t — z)?u(dt) < cu(z,o00).

Moreover, p(x,00) — 0 as x — oo. Thus, there exists M > 0 such that (M, 00) <
D/c and for all > M, we have

/:O(t — 2)2u(dt) < D.
Note that " < 1+ 2u for u € (0,1). As a result, for z > M,
exp (,g |- x)Qu(dt)) <142 [T - aputan)
Combining this with equation , one gets that for v > M
7 e (350 = 2P)atde) < o) +2 [ (0= )pld)
and hence, by Lemma [5.8.4]

M(S:OO) /;O exp (55 (t — 2)%)pu(dt) <1+

2
pi(x, 00)

/Oo(t —)?u(dt) <1+ 2c.

Denote b = 1/2 and S(u) = 55[u — 1]3 for u > 0. We have S(bu) < F5u’.

2D
Therefore )

p(z, 00)

/;o exp (B(b(t — 2)) ) uldt) < 1+ 2

for all x > M.
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On the other hand, for x € (0, M),

1
pi(x, 00)

according to inequality ((5.8.6)),
c [ c 0o c
E [ e (e — )l < S esp (5 [0~ 02utdn)) < 5 exple/D).

Hence, there exists K > 0 such that for all x > 0,

| exp (et = a))uat) < 5 [ exp (55t = )?)utat)

1
pi(z, 00)
Thus, following the notations of Theorem [5.5.1] we have

[, e (300~ )t < i

o0
K':=su

1
sup 5 [ e (8(btt — ) tat) < oo

and by a similar argument, we get K~ < oo. According to Theorem [5.5.1] we
conclude that (5.8.2)) holds. O

Remark 5.8.7. We have in fact proved that Equation implies KT < 0o and
K~ < 00, which is equivalent to the contraction property (5.8.2) of theorem m
If we consider the cost function 3(x) = [|z| —a)*,a > 0 instead of x* then, following
the same line of reasoning, we see that the implication

(5.8.5) = max{K", K~} <

still holds with
QF(t) =inf{f(y) + (It — y| — al}}.

Therefore, the weak transport inequality Tg is equivalent to the contraction property.
This method can be generalized to more general convex costs, one can refer to [94]
for more details.

5.9 A necessary condition for transport-
information inequalities

In this section, we are interested in transport-information inequalities introduced
in [54, [63]. We recall that p satisfies W1l if and only if for all probability v < p, it
holds

Wip, v)* < Z(v|p),
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where the Fisher information is defined by

1 12
Tl =1 [, ];du,

with f = dv/du. We say that p satisfies W1 H if and only if for all probability v < p,
it holds
Wi(p,v)* < H(v|p).

The following implications are known

LS = TQI = T2

¢ 4
Wil = W.H

A natural question is to ask whether these implications can be reversed. This ques-
tion is already partially answered. In [22], Cattiaux and Guillin provided an example
of a real probability measure, which satisfies Talagrand’s inequality Ty but not the
log-Sobolev inequality LS. This probability is defined on R as follows :

1 5
p(dx) = Zexp{—|x|3 — |z| — 3% sin?(z) }dx, with 2 < B < 3"
Later, Gozlan [43] provided another example which achieved the same task with
a tail distribution exactly Gaussian. Guillin, Leonard, Wang and Wu provided an
example of a probability measure on R in [53], such that W;I holds but not LS :

1
p(dr) = Zexp{—:z:4 — |z|? — 423 sin®(2) }dx, with 2 < 3 <3

In the same paper, they also gave an example which satisfies W1H but not W;1.

The goal of this section is to construct an example of a real probability measure
which satisfies Ty but not W41 and, as a consequence, not TsI. The idea is to find a
necessary condition for the inequality W1l and to compare it to the characterisation
of Ty given in [43].

For technical reasons, we will assume that p is a probability measure absolutely
continuous w.r.t Lebesgue measure on R with median 0. We also denote by = — u(z)
the density function of 1 with respect to Lebesgue measure, that is to say

plde) = p(w)dr.

We assume further that for all segment [a,b],a < b, pfa,b] > 0, in order to avoid
technical discussions.
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5.9.1 Test functions

The idea to obtain a necessary condition is to consider the following family of
test functions :

Definition 5.9.1. Define a family of functions (f,),,r € R% by

0 ifx <0
fr(x) = fx dt if0<x<r,
frudt fo>7,,

and let (VT)TEWF denote the family of probability measures defined by

dv,

with ~
z= | f@)u)ds.

Finally, denote by T, the monotone rearrangement map sending pu to v, (which
realizes the optimal transport cost for all convez costs).

Note that v,.(0,7,.(0)) = p(—00,0) = 1/2.

This choice of test functions is rather natural. One of the main reason is that
the Fisher information is easy to compute : we have

R UV B /.
I(vy|p) = /9 Zr/fTQdPJ:ZT 0 Mz(z)d:u(x): Z(r)

It follows that, if we assume that the transport information inequality a(7) < [
holds for p, we have immediately

2 <o
fe(r) =

according to the item 2. of next lemma, it follows that

T (v, 1)+~

,
OJ(T(VT,M»/ i/ﬁ(?’, o0) < c. (5.9.2)
0o p(t)
We thus get a condition which is similar to the characterisations of Poincaré in-
equality and Log-Sobolev inequalities. Our next goal will be to estimate the trans-
portation cost in the previous formula. Before that, let us explore some additional
properties of our family of test functions.

Proposition 5.9.3. With the notations above, the following assertions hold :
1. Forall0<z<yeR, Z, < Z,.
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2. Forallr >0, Z./f.(r) = fr(r)p(r, c0).
3. The function v+ f,(r)?/Z,,r € R% is strictly increasing.

proof. (1) If 0 < x < y, then

=fy(t) t<wz
falt) {< f,t)  t>uw

and the conclusion follows.

(2) We have :
Ze o foe)dpe) S fo(rPdpe)
fo(r) fr(r) % £.(r) = fo(r)u(r, o0).

(3) Assume that h > 0, in order to show

B Sl + 1)
Zr Zr+h 7

it is enough to show
fr—i—h(r + h)2 Zr+h

L2 T 7
Observe that f,, = f- on [0,r] and frin(z) < fran(r + h) for all z > r so it holds

Zryn = /OT Sran(@)?dp + /:O Srn(x)?dp

< /0 fr(@)?dp + frn(r + h)*p(r, 00)
=Z + M(h OO)(fr-i—h(r + h)2 - fT(T‘)2).

Thus,
Z, r, 00
14 al )(frJrh(r +h)? — f.(r)?).
Z, Z,
On the other hand, according to (2), it holds
pi(r, o0) <L
Zy fr(r)?
Therefore,
Ly r, 00
g MO gy - )
Z, Z,
1 fr h(T’+ h)2
g 1 7 7 N9 T h 2 - T 2 = Jr—'
+ fr(r>2(f +h(r+ ) f (T) ) fr(T)2
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In dimension one, according to a well known result in optimal transport, for any
convex cost function # : R™ — R, it holds

To(vrom) = [ 0(f = T, (2) )dp.

where we recall that 7). is the monotone rearrangement map sending p on v,., which
is defined as
T,:=F,'oF,.

In order to get a necessary condition for transport information inequalities, we now
want to estimate from below the transportation cost. Let us turn to the family
of functions T, and study their properties. The next proposition shows that the
function r — T,(x) is strictly increasing for all z € R.

Proposition 5.9.4 (Monotonicity of T,.). For allx € R, the functionr — T,(x),r €
R is strictly increasing.
proof. Let r,h > 0, we shall show that for given z, T}.(x) < T,,(x). To discuss the

monotonicity, we consider different cases :

Case (i), Tran(z) < 1.
Since for all t € [0, T,4p], fr(t) = frin(t), thus

/Tr-!—h(x) ﬁdlu S /Tr+h(x) f7~2+h
0 Zr 0 Zr+h
= Vpin(0, Trin(2)) = p(—o00, ) = 1,(0, T;.(x))

Tr(z) £2
= d
‘/O ZT /’L7

where the first inequality is from the fact that Z, < Z,.,,. Hence, T,(x) < T, ().

Case (i1), Tr(x) = r + h.
Since f,(x) = f,.(r) on (r,00) D (T,.(z), 00), it holds

dp

p(x,00) = v, (T, (), 0)

B /OO 2w

To(z) Ly
=t (@), )

< (T (), 00) fryn(r + h)Q/ZH-ha

the last inequality is from the item (3) of Proposition [5.9.3. We deduce that there
exists v > T,.(z) = r + h, such that

p(v, 00) frin(r + h)? ) Zysn = pla, 00).
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Hence,

o 2
fr}h(a:)du = p(z, 00).
v r+h

It follows that T, p(z) = v > T,(x).
Case (iii), T.(z) > r and T,4p(z) = 7+ h.

By similar arguments of the previous case, we deduce the existence of v > T,.(x) > r,
such that

p(v,00) frin(r + h)?/ Zyin = plw, 00).
On the other hand, since T,,,(x) > r + h, it holds

T (), 00) frsn(r + h)*/ Zoi = pu(z, 00).

We conclude from this , that u(v,00) = p(T,4n(z),00) and so T,p(z) = v > T,.(z).
Now it is enough to show the monotonicity in the following last case :

Case (iv), r < T.(x), Tron(x) <7+ h.
We shall prove it by contradiction. Assume that

r < Ton(x) <T.(x) <r+h.

Let b’ = T,y p(x) —r. We remark that r+h' = T, (x) < r+hand Toyp(z) <7+,
according to the Case (i), it holds T, 4 (z) > Tryp ().

On the other hand, since T,.(z) > r + h/, the Case (ii) allows to conclude that
Trin(x) > T,(z). As a consequence,

Tr-i—h(x) > TT_,_h/(CL’) > TT(ZL’)

This is a contradiction since we suppose that T, (x) < T).(x).
Therefore, by Cases (i) — (iv), one can conclude that for all v, h > 0,

Toin(z) > T, ().
0

For a given x > 0, the function r € R* +— T,.(x) is increasing and is bounded
from below by 0. Thus the limit when r goes to 0 exists. We calculate this limit in
the next proposition.

Proposition 5.9.5. Given x >0, lim,_,o T,(z) = F;;'(1 — @) > .

fe(®)?
Ze

proof. Let ¢ > 0, denote ¢, = [ By definition, one can write v.(t) = pu(t)

Ze
Now it holds

1 =v.(0,00) = /08 fez)Zdu + c.pu(e,00) € (csu(a, 00), ¢ (0, oo))
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Therefore, by the fact that p(0,00) = 1, it follows that

2<c <
pi(g, 00)

which implies that c. — 2, when ¢ — 0. Now consider

_ I AUk
pulz, 00) = v(Te(x), 00) = dp, (5.9.6)
T:(x) ZE
Noticing that when e goes to 0,
< fe(t)? /°° fo(t)?
——du = 1 = ——dpu.
/E 7 du = p(e,00)ce = 1> p(x,00) o 7 dp

Thus, for € small enough, we have T.(z) > . Together with (5.9.6), for £ small
enough, it follows that

e ) fs t 2
/1/(37, OO) = / ( ) d/’l‘ = CE,LL(TE(:C), OO),
T.(z) Ze
Thus ( |
. ~ pfz, 00
lim p(T-(z), 00) = 220
Hence, lim,_,o T.(z) = Fu_1<1 _ @) O

5.9.2 Lower bound of the transportation cost for the test
function

Next we will derive a lower bound for the transportation cost in terms of the
test function.
Proposition [5.9.5 and the assumption of median 0 immediately yield that

T5(0) = Lim 72(0) = F1(3/4) > 0.

Therefore, for 0 < = < T5(0), by monotonicity of r — 7,(0) and monotonicity of
x +— T,(x), it holds
0<z<Tp(0) <T,(0) < T)(x).

Hence, for a convex cost 6,

Totvr, ) = [0l —T@)du> [ 0l — ()

> 10, T,(0))0(T; (0) ~ To(0)) > 10(T:(0) ~ To(0)).

where the last inequality we used x(0,7,(0)) > p(0,75(0)) = . Plugging it into
equation (5.9.2)), and now denoting by m the median of x4 in the place of 0, one gets
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Theorem 5.9.7. Let pu be symmetric with respect to its median m and absolutely
continuous with respect to Lebesgue measure. Assume that p satisfies the transport
information inequality with a convexr cost 6 and increasing function o, more pre-
cisely, for all probability measure v < p, it holds :

a(To(v, 1)) < L(v|p)

then

Bt = sup {a (ié’ (Tx(m) - F! (i))) /7: ,u(lt)dt ,u(:zc,oo)} < ¢ < 0.

Remark 5.9.8. The symmetric property is only for a simplification issue, for u
non-symmetric, the following negative counter part part also holds

1 /= 1 mo ]
B™ = sup {a (49 (Tz(m) - F! (4))) /x mdt u(—oo,x)} <c < oo,
with Ty, a function analogy of T, but related to the negative part of .

Corollary 5.9.9. Let p be symmetric with respect to its median m and absolutely
continuous with respect to Lebesque measure. Assume that there exists a convex cost
0, with @ > 0 on R\ {0} and an increasing positive function o : Rt — R™* such
that p satisfies the transport information inequality :

Vv <p, o a(To(v,p) < cZ(v|p).

Furthermore, if there exists € > 0 such that (m being the median of i)

m+e ]
M ::/ ——dt < 00,
m ()

then p satisfies the Poincaré inequality with constant C', and it holds

C' < sup { i 3 ,2M}
Te(m) — F;* (2)

proof. According to the characterisation of Poincaré inequality given in [82] by
Muckenhoupt, it is enough to show that

A= sup{

x>m

z 1
/m Wt)dt iz, oo)} < 00.

By monotonicity of T, (Proposition |5.9.4)), one has T,,.(m) — Fljl (%) > ( for all
x > 0. Theorem [5.9.7| indicates that for all x > m + ¢,

z ] c
e {/m Wf)dt “(‘T’OO)} = T.(m) — F;! (%)
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We observe that on the other hand,

z 1 M
sup / dt,u:c,oo}gM,um,oo = —.
x€(m,m+e) { m ,Lt(t) ( ) ( ) 2

Thus

t<on )

The conclusion follows by [82] which state the fact that the optimal constant of
Poncaré inequality C' satisfies C' < 4A.
O

5.9.3 An example of real probability measure which satisfies
Ty but not W1

Consider a real probability measure . whose density with respect to Lebesgue
measure is the following :

> Lppsn) (e TI=ED e > 0, (5.9.10)

and p({k}) = e F — el =(:1?,
Now we define i, a modification of u, such that f is absolutely continuous with
respect to Lebesgue measure, fi is of density :

—t

e 00
:72

k=1 k=1

(t)e (k+1)—(k+1)2

It is easy to see that at neigbhorhood of oo, fi(n,00) ~ e and Iy ﬁdt ~ (1-
1/e)e™. Then we will show that

T.(0) = c©

when  — oo and as a consequence, it will follow that the BT defined in Theorem
5.9.7| will be oo and so W;I will fail.

Assume that in the contrary 7,(0) is bounded, then there exists A > 0 such that
for all n > A, T,,(0) < A. It follows that for all n > A and f, = fa on [0,7,(0)].
We deduce that for alln > A :

Tn (0 d 1 A 9 i
Z/ M\Z/ —Zn/o fa(z)dp — 0

Where in the last step we use the fact that Z, — oo as n goes to co. By contradic-

tion, we can conclude that
T.(0) — oo.
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5.10 Recap.

Here we recap characterisations for functional inequalities in dimension one.
— The weak transport cost T is additive for convex costs.
— The equivalence following holds

Ux+h)—U(r) < Va+bh < Ty T, & Ty < CmLS < Tg,

where [ is a convex function vanished in a neighborhood of 0 and U is the
push forward of exponential measure with respect to pu.
— We also have the following equivalence

U(x+h) —U(z) <a+bh e P cower & Ty, & T, & T,

where « is a quadratic-linear cost.
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