Contrôle de forme de coques multistables : modélisation, optimisation et mise en œuvre
Auteur / Autrice : | Walid Hamouche |
Direction : | Corrado Maurini, Angela Vincenti |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique |
Date : | Soutenance le 08/12/2016 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris (2000-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Jean Le Rond d'Alembert (Paris ; 2006-....) |
Jury : | Examinateurs / Examinatrices : Konstantinos Danas, Stefano Vidoli, Stéphane Bourgeois, Joël Pouget, Keith Alexander Seffen, Benoît Roman |
Rapporteur / Rapporteuse : Olivier Thomas, Konstantinos Danas |
Mots clés
Résumé
Ces travaux de thèse sont basés principalement sur le phénomène de multistabilité des structures minces de type plaques et coques ainsi que quelques applications associées. Les travaux sont divisés en deux parties. La première partie a pour objet l’étude théorique, numérique et expérimentale de la multistabilité des coques minces orthotropes peu profondes à courbures uniformes. On montre notamment qu’une telle coque, lorsqu’elle est soumise à la combinaison d’une courbure initiale et d’une précontrainte suffisamment élevées, possède jusqu’à trois configurations stables vis-à-vis des propriétés matériaux. Dans un premier temps, nous proposons des critères de conception et fabrication de coques multistables allant jusqu’à la tristabilité, validés numériquement et expérimentalement. Ensuite, nous appliquons ces critères à la conception et à la fabrication de coques multistables cylindriques dont la différence de niveau énergétique entre les deux états stables est minime. Sur ce support, la deuxième partie est consacrée à des applications exploitant la bistabilité des coques cylindriques minces à faible différence énergétique. Nous effectuons tout d’abord une application au contrôle de forme via l’utilisation de matériaux actifs que l’on attache à la structure. Cela comprend une première phase théorique de conception de la structure et de la loi d’actionnement, et une seconde phase de mise en œuvre expérimentale. Ensuite, nous étudions théoriquement et expérimentalement les propriétés de dynamique non-linéaire de ce type de coques dans le but de mettre en évidence les modes d’oscillations intrinsèques à une source d’excitation externe. Enfin, nous proposons une application à la récupération d’énergie vibratoire non-linéaire de coques multistables cylindriques métalliques par voie piézoélectrique.