Curation et caractérisation du contenu dans les communautés d'un lieu
Auteur / Autrice : | Giuseppe Scavo |
Direction : | Zied Ben Houidi, Renata Teixeira |
Type : | Thèse de doctorat |
Discipline(s) : | Ingénierie |
Date : | Soutenance le 15/12/2016 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : Institut national de recherche en informatique et en automatique (France ; 1979-....) |
Jury : | Examinateurs / Examinatrices : Marcelo Dias De Amorim, Krishna Gummadi, Christian Dan Vodislav |
Mots clés
Résumé
La quantité d'informations sur Internet aujourd'hui accable la plupart des utilisateurs. La découverte d'informations pertinentes (p. Ex. Des nouvelles à lire ou des vidéos à regarder) prend du temps et est fastidieuse; pourtant, elle fait partie du travail quotidien d'au moins 80% des employés en Amérique du Nord. Plusieurs systèmes de filtrage d'informations pour le Web peuvent faciliter cette tâche pour les utilisateurs. Les exemples se retrouvent dans des familles telles que les réseaux sociaux, les systèmes de notation sociale et les systèmes de bookmarking social. Tous ces systèmes exigent que l'engagement de l'utilisateur fonctionne (par exemple, la soumission ou l'évaluation du contenu). Ils fonctionnent bien dans une communauté Internet, mais souffrent dans le cas des petites communautés. En effet, dans les petites communautés, l'apport des utilisateurs est plus rare. Nous nous concentrons sur les communautés d'un endroit qui sont des communautés qui regroupent les gens qui vivent, travaillent ou étudient dans la même région. Exemples de communautés d'un lieu: (i) les étudiants d'un campus, (ii) les personnes vivant dans un quartier ou (iii) les chercheurs travaillant sur le même site. Anecdote nous savons que seulement 0,3% des travailleurs contribuent quotidiennement à leur réseau social d'entreprise. Cette information montre qu'il ya un manque d'engagement des utilisateurs dans les communautés d'un endroit.Dans cette thèse, nous tirons parti de l'observation passive des communautés d'un endroit pour réduire les frais généraux pour les utilisateurs de participer à des systèmes de filtrage de l'information. Nous obtenons une nouvelle source riche d'informations que nous utilisons pour (i) concevoir WeBrowse, un outil de restauration de contenu pour les communautésLa quantité d'informations sur Internet aujourd'hui accable la plupart des utilisateurs. La découverte d'informations pertinentes (p. Ex. Des nouvelles à lire ou des vidéos à regarder) prend du temps et est fastidieuse; pourtant, elle fait partie du travail quotidien d'au moins 80% des employés en Amérique du Nord. Plusieurs systèmes de filtrage d'informations pour le Web peuvent faciliter cette tâche pour les utilisateurs. Les exemples se retrouvent dans des familles telles que les réseaux sociaux, les systèmes de notation sociale et les systèmes de bookmarking social. Tous ces systèmes exigent que l'engagement de l'utilisateur fonctionne (par exemple, la soumission ou l'évaluation du contenu). Ils fonctionnent bien dans une communauté Internet, mais souffrent dans le cas des petites communautés. En effet, dans les petites communautés, l'apport des utilisateurs est plus rare. Nous nous concentrons sur les communautés d'un endroit qui sont des communautés qui regroupent les gens qui vivent, travaillent ou étudient dans la même région. Exemples de communautés d'un lieu: (i) les étudiants d'un campus, (ii) les personnes vivant dans un quartier ou (iii) les chercheurs travaillant sur le même site. Anecdote nous savons que seulement 0,3% des travailleurs contribuent quotidiennement à leur réseau social d'entreprise. Cette information montre qu'il ya un manque d'engagement des utilisateurs dans les communautés d'un endroit.