Contrôle optimal de modèles de neurones déterministes et stochastiques, en dimension finie et infinie. Application au contrôle de la dynamique neuronale par l'Optogénétique
Auteur / Autrice : | Vincent Renault |
Direction : | Michèle Thieullen, Emmanuel Trélat |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques Appliquées |
Date : | Soutenance le 20/09/2016 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de probabilités et modèles aléatoires (Paris ; 1997-2017) |
Jury : | Examinateurs / Examinatrices : Dan Goreac, Benoît Perthame, Assia Benabdallah, Arnaud Debussche |
Mots clés
Résumé
Let but de cette thèse est de proposer différents modèles mathématiques de neurones pour l'Optogénétique et d'étudier leur contrôle optimal. Nous définissons d'abord une version contrôlée des modèles déterministes de dimension finie, dits à conductances. Nous étudions un problème de temps minimal pour un système affine mono-entrée dont nous étudions les singulières. Nous appliquons une méthode numérique directe pour observer les trajectoires et contrôles optimaux. Le contrôle optogénétique apparaît comme une nouvelle façon de juger de la capacité des modèles à conductances de reproduire les caractéristiques de la dynamique du potentiel de membrane, observées expérimentalement. Nous définissons ensuite un modèle stochastique en dimension infinie pour prendre en compte le caractère aléatoire des mécanismes des canaux ioniques et la propagation des potentiels d'action. Il s'agit d'un processus de Markov déterministe par morceaux (PDMP) contrôlé, à valeurs dans un espace de Hilbert. Nous définissons une large classe de PDMPs contrôlés en dimension infinie et prouvons le caractère fortement Markovien de ces processus. Nous traitons un problème de contrôle optimal à horizon de temps fini. Nous étudions le processus de décision Markovien (MDP) inclus dans le PDMP et montrons l'équivalence des deux problèmes. Nous donnons des conditions suffisantes pour l'existence de contrôles optimaux pour le MDP, et donc le PDMP. Nous discutons des variantes pour le modèle d'Optogénétique stochastique en dimension infinie. Enfin, nous étudions l'extension du modèle à un espace de Banach réflexif, puis, dans un cas particulier, à un espace de Banach non réflexif.