Thèse soutenue

Anneaux tautologiques d'espaces de modules de courbes

FR  |  
EN
Auteur / Autrice : Malick Camara
Direction : Alessandro ChiodoDimitri Zvonkine
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 30/09/2016
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Jussieu-Paris Rive Gauche (1997-....)
Jury : Examinateurs / Examinatrices : Pierre-Emmanuel Chaput, Antoine Ducros
Rapporteur / Rapporteuse : Samuel Boissière

Résumé

FR  |  
EN

Les espaces de modules de Riemann répondent au problème de la classification des surfaces de Riemann compactes d'un genre donné. Le sujet de cette thèse est la cohomologie de l'espace des modules des courbes d'un genre donné avec un certain nombre de points marqués. La description de cet anneau a été initiée par D. Mumford puis C. Faber avait proposé une description de l'anneau tautologique des espaces de modules sans points marqués. Une première source de relations provient des relations A. Pixton démontrées par A. Pixton, R. Pandharipande et D. Zvonkine mais on ne sait pas si elles sont complètes. Une autre source de relations utilisée dans ce travail sont les relations de A. Buryak, S. Shadrin et D. Zvonkine. Avant cette thèse, il y avait peu de résultats sur l'anneau tautologique d'espaces de modules de courbes avec un nombre quelconque de points marqués. Cette thèse donne une description complète des l'anneaux tautologiques des espaces de modules de courbes de genres 0, 1, 2, 3 et 4. Un des résultats ayant demandé beaucoup de travail est le groupe de degré 2 de l'anneau tautologique des espaces de modules de courbes lisses de genre 4. Ce groupe demande un travail sur l'annulation de certaines classes tautologiques sur le bord de la compactification de Deligne-Mumford de l'espace des modules en plus d'un astucieux travail numérique. L'espace des modules des courbes réelles de genre 0 et sa théorie de l'intersection sont également étudiés. On peut alors démontrer plusieurs résultats analogues à ceux obtenus dans le cas complexe comme l'équation de la corde. On démontre une formule donnant les nombres d'intersection.