Thèse soutenue

Dynamique Zénon quantique en électrodynamique quantique avec circuit

FR  |  
EN
Auteur / Autrice : Kristinn Júlíusson
Direction : Daniel EstèveDenis Vion
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 15/09/2016
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Service de physique de l'état condensé (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Jean-Michel Raimond
Rapporteur / Rapporteuse : Olivier Buisson, Peter J. Leek

Résumé

FR  |  
EN

Cette thèse présente le travail expérimental effectué pour observer la dynamique quantique de Zénon (QZD) dans une architecture 'circuit-QED' tridimentionnelle fonctionnant à très basse température. Dans cette architecture, un circuit supraconducteur de type transmon, jouant le rôle d'un atome artificiel, est couplé au champ électromagnétique d'une cavité microonde. Les niveaux d'énergie de l'atome et de la cavité sont alignés d'une nouvelle manière, afin de manipuler les états de Fock individuels de la cavité, tout en minimisant sa non-linearité Kerr induite par le transmon. La dynamique Zénon est obtenue en pilotant classiquement le champ de la cavité, tout en excitant fortement une transition inter-niveaux d'énergie du transmon, conditionnée à un état de Fock particulier. Ce forcage maintient la population de l'état de Fock à zéro, et conduit à la dynamique Zeno. Cette dynamique est observée par mesure de sa fonction de Wigner à intervalles de temps réguliers, soit par tomographie de Wigner, soit par tomographie quantique standard et reconstruction de la matrice densité. Nous observons trois exemples de QZD, et analysons la décohérence observée à l'aide simulations quantiques du système.