Thèse soutenue

Simulations numériques avancées et analyses physiques de couches limites turbulentes à grand nombre de Reynolds

FR  |  
EN
Auteur / Autrice : Nicolas Renard
Direction : Pierre SagautSébastien Deck
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 08/01/2016
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris
Partenaire(s) de recherche : Laboratoire : Office national d'études et de recherches aérospatiales (France). Centre de Meudon
Jury : Président / Présidente : José-Maria Fullana
Examinateurs / Examinatrices : Jean-Paul Bonnet, Yann Doutreleau
Rapporteurs / Rapporteuses : Christophe Bailly, Jean-Christophe Robinet

Résumé

FR  |  
EN

Mieux comprendre les spécificités de la dynamique des couches limites à grand nombre de Reynolds malgré les contraintes métrologiques et son coût de simulation numérique est crucial. A titre d'exemple, cette dynamique peut déterminer plus de la moitié de la traînée d'un avion en croisière. Décrire la turbulence pariétale peut guider la résolution numérique d'une partie des fluctuations à un coût maîtrisé par des stratégies WMLES (simulation des grandes échelles avec modèle de paroi). Les présentes analyses physiques de couches limites turbulentes incompressibles à gradient de pression nul et à grand nombre de Reynolds s'appuient sur des simulations numériques avancées. Après validation d'une base de données, le frottement moyen pariétal est décomposé selon l'identité FIK (Fukagata et al. (2002)), dont l'application malgré le développement spatial est discutée. Une analyse spectrale montre que les grandes échelles (\lambda_x > \delta) contribuent à environ la moitié du frottement vers Re_\theta = 10^4. Les limitations de l'identité FIK motivent la dérivation d'une décomposition physique de la génération du frottement dont le comportement asymptotique est alors relié à la production d'énergie cinétique turbulente dans la zone logarithmique. Pour mieux reconstruire les spectres spatiaux, une nouvelle méthode d'estimation de la vitesse de convection turbulente en fonction de la longueur d'onde des fluctuations, adaptée au développement spatial et à des signaux temporels de durée finie, est dérivée, interprétée et évaluée à Re_\theta = 13000. Certaines des conclusions éclairent des modifications d'une stratégie WMLES, le mode III de la méthode ZDES.