Thèse soutenue

Hétérogénéités des fluides piétonniers : une matière active individuelle et collective

FR  |  
EN
Auteur / Autrice : Fabien Cissé
Direction : Marc BuiHugues Chaté
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 29/02/2016
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : École pratique des hautes études (Paris ; 1868-....)
Jury : Examinateurs / Examinatrices : Paul Bourgine, José Halloy, Annie Lemarchand
Rapporteurs / Rapporteuses : Michaël Krajecki, Julien Pettré

Résumé

FR  |  
EN

Des ensembles complexes, tels que les foules de piétons peuvent être soumis à de très fortes fluctuations de vitesses et de densités. Les individus formant ces ensembles sont les propres vecteurs de leur mouvement. Ils répondent à des règles locales microscopiques de déplacement qui, sous certaines conditions de densité, peuvent avoir un impact macroscopique sur la dynamique de l'ensemble. A la différence des animaux purement collectifs, comme ceux composant les bancs de poissons, les nuées d'oiseaux ou bien les troupeaux de gnous, les piétons partagent des intentions à la fois collectives et individuelles. De cette nature particulière apparaissent des comportements d'auto-organisation singuliers, dépendant de la nature cognitive des interactions entre les piétons, de la géométrie de l'espace, de la pluralité des objectifs, ainsi que la densité et la vitesse. L'objectif de cette thèse a été de reproduire via la simulation numérique les principaux phénomènes observés à l'aide d'hypothèses physiques et comportementales. Nous avons adopté une approche microscopique continue prenant en compte leur capacité d'anticipation via la recherche des différents temps de collision et l'utilisation d'une fonction d'estimation des angles de déviation possibles. Nous avons alors comparé notre modèle avec ceux dont il s'inspire face à différentes géométries. Nous avons aussi étudié des situations types comme l'évacuation à travers une porte avec différents jeux de paramètres : la taille de la porte, la vitesse et l'injection d'un bruit. Enfin, nous avons reproduit le phénomène d'oscillation de passages de deux groupes autour d'une porte en introduisant quelques règles de priorité.