Thèse soutenue

Périodes du groupe fondamental motivique de la droite projective moins zero, l’infini et les racines n-èmes de l’unité

FR  |  
EN
Auteur / Autrice : Claire Glanois
Direction : Francis Brown
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 06/01/2016
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Jussieu-Paris Rive Gauche (1997-....)
Jury : Examinateurs / Examinatrices : Herbert Gangl, Pierre Cartier, Yves André
Rapporteur / Rapporteuse : Don Zagier, Jianqiang Zhao

Résumé

FR  |  
EN

En s'inspirant du point de vue adopté par Francis Brown, nous examinons la structure d'algèbre de Hopf des multizêtas motiviques cyclotomiques, qui sont des périodes motiviques du groupoïde fondamental de la droite projective moins 0, l'infini et les racines Nèmes de l'unité. Par application d'un morphisme période surjectif (conjecturé isomorphisme), nous pouvons déduire des résultats (identités, familles génératrices, etc.) sur les multizêtas cyclotomiques (complexes). La coaction de cette algèbre de Hopf (formule combinatoire explicite) est duale à l'action d'un dénommé groupe de Galois motivique sur ces périodes motiviques. Ces recherches sont ainsi motivées par l'espoir d'une théorie de Galois pour les périodes, étendant la théorie de Galois usuelle pour les nombres algébriques. (i) Nous présentons de nouvelles relations entre les sommes d'Euler (N=2) motiviques et deux nouvelles bases (conjecturées identiques) pour les multizêtas motiviques (N=1): Hoffman star (sous une conjecture analytique) et une seconde via les sommes d'Euler motiviques. (ii) Nous appliquons des idées de descentes galoisiennes à l'étude de ces périodes, en regardant notamment comment les multizêtas motiviques relatifs aux racines N' èmes de l'unité se plongent dans ceux associés aux racines Nèmes, lorsque N' divise N. Après avoir fourni des critères généraux, nous nous tournons vers les cas N égal à 2,3,4,6, 8, pour lesquels le groupoïde fondamental motivique engendre la catégorie des motifs de Tate mixtes sur l'anneau des entiers du Nème corps cyclotomique ramifié en N (non ramifié pour 6). Pour ces valeurs, nous explicitons les descentes galoisiennes, et étendons les résultats de Pierre Deligne