Utilisation de méta-heuristiques coopératives parallèles pour la résolution de problèmes d'optimisation combinatoire difficiles
Auteur / Autrice : | Danny Munera Ramirez |
Direction : | Carine Souveyet, Daniel Diaz |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 27/09/2016 |
Etablissement(s) : | Paris 1 |
Ecole(s) doctorale(s) : | École doctorale de Management Panthéon-Sorbonne (Paris ; 2012-....) |
Partenaire(s) de recherche : | Equipe de recherche : Centre de recherche en informatique (Paris ; 1986-....) |
Jury : | Président / Présidente : Salvador Abreu |
Examinateurs / Examinatrices : Carine Souveyet, Daniel Diaz, Bénédicte Le Grand | |
Rapporteur / Rapporteuse : Didier El Baz, Christine Solnon |
Mots clés
Mots clés contrôlés
Résumé
Les Problèmes d’Optimisation Combinatoire (COP) sont largement utilisés pour modéliser et résoudre un grand nombre de problèmes industriels. La résolution de ces problèmes pose un véritable défi en raison de leur inhérente difficulté, la plupart étant NP-difficiles. En effet, les COP sont difficiles à résoudre par des méthodes exactes car la taille de l’espace de recherche à explorer croît de manière exponentielle par rapport à la taille du problème. Les méta-heuristiques sont souvent les méthodes les plus efficaces pour résoudre les problèmes les plus difficiles. Malheureusement, bien des problèmes réels restent hors de portée des meilleures méta-heuristiques. Le parallélisme permet d’améliorer les performances des méta-heuristiques. L’idée de base est d’avoir plusieurs instances d’une méta-heuristique explorant de manière simultanée l’espace de recherche pour accélérer la recherche de solution. Les meilleures techniques font communiquer ces instances pour augmenter la probabilité de trouver une solution. Cependant, la conception d’une méthode parallèle coopérative n’est pas une tâche aisée, et beaucoup de choix cruciaux concernant la communication doivent être résolus. Malheureusement, nous savons qu’il n’existe pas d’unique configuration permettant de résoudre efficacement tous les problèmes. Ceci explique que l’on trouve aujourd’hui des systèmes coopératifs efficaces mais conçus pour un problème spécifique ou bien des systèmes plus génériques mais dont les performances sont en général limitées. Dans cette thèse nous proposons un cadre général pour les méta-heuristiques parallèles coopératives (CPMH). Ce cadre prévoit plusieurs paramètres permettant de contrôler la coopération. CPMH organise les instances de méta-heuristiques en équipes ; chaque équipe vise à intensifier la recherche dans une région particulière de l’espace de recherche. Cela se fait grâce à des communications intra-équipes. Des communications inter-équipes permettent quant a` elles d’assurer la diversification de la recherche. CPMH offre à l’utilisateur la possibilité d’ajuster le compromis entre intensification et diversification. De plus, ce cadre supporte différentes méta-heuristiques et permet aussi l’hybridation de méta-heuristiques. Nous proposons également X10CPMH, une implémentation de CPMH, écrite en langage parallèle X10. Pour valider notre approche, nous abordons deux COP du monde industriel : des variantes difficiles du Problème de Stable Matching (SMP) et le Problème d’Affectation Quadratique (QAP). Nous proposons plusieurs méta-heuristiques originales en version séquentielle et parallèle, y compris un nouvelle méthode basée sur l’optimisation extrémale ainsi qu’un nouvel algorithme hybride en parallèle coopératif pour QAP. Ces algorithmes sont implémentés grâce à X10CPMH. L’évaluation expérimentale montre que les versions avec parallélisme coopératif offrent un très bon passage à l’échelle tout en fournissant des solutions de haute qualité. Sur les variantes difficiles de SMP, notre méthode coopérative offre des facteurs d’accélération super-linéaires. En ce qui concerne QAP, notre méthode hybride en parallèle coopératif fonctionne très bien sur les cas les plus difficiles et permet d’améliorer les meilleures solutions connues de plusieurs instances.