Techniques variationnelles et calcul parallèle en imagerie : Estimation du flot optique avec luminosité variable en petits et larges déplacements
Auteur / Autrice : | Diane Gilliocq-Hirtz |
Direction : | Zakaria Belhachmi |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 07/07/2016 |
Etablissement(s) : | Mulhouse |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mathématiques informatique et applications (Mulhouse) - Laboratoire de Mathématiques Informatique et Applications |
Résumé
Le travail présenté dans cette thèse porte sur l'estimation du flot optique par méthodes variationnelles en petits et en grands déplacements. Nous proposons un modèle basé sur la combinaison locale-globale à laquelle nous ajoutons la prise en compte des variations de la luminosité. La particularité de ce manuscrit réside dans l'utilisation de la méthode des éléments finis pour la résolution des équations. En effet, cette méthode se fait pour le moment très rare dans le domaine du flot optique. Grâce à ce choix de résolution, nous proposons d'implémenter un contrôle local de la régularisation ainsi qu'une adaptation de maillage permettant d'affiner la solution au niveau des arêtes de l'image. Afin de réduire les temps de calcul, nous parallélisons les programmes. La première méthode implémentée est la méthode parallèle en temps appelée pararéel. En couplant un solveur grossier et un solveur fin, cet algorithme permet d'accélérer les calculs. Pour pouvoir obtenir un gain de temps encore plus important et également traiter les séquences en haute définition, nous utilisons ensuite une méthode de décomposition de domaine. Combinée au solveur massivement parallèle MUMPS, cette méthode permet un gain de temps de calcul significatif. Enfin, nous proposons de coupler la méthode de décomposition de domaine et le pararéel afin de profiter des avantages de chacune. Dans une seconde partie, nous appliquons tous ces modèles dans le cas de l'estimation du flot optique en grands déplacements. Nous proposons de nous servir du pararéel afin de traiter la non-linéarité de ce problème. Nous terminons par un exemple concret d'application du flot optique en restauration de films.