Thèse soutenue

Mise en œuvre des préférences dans des problèmes de décision

FR  |  
EN
Auteur / Autrice : Namrata Patel
Direction : Souhila KaciRoland Ducournau
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/10/2016
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : Jérôme Lang
Examinateurs / Examinatrices : Souhila Kaci, Roland Ducournau, Nic Wilson, Nadjib Lazaar, farid Nouioua
Rapporteurs / Rapporteuses : Nic Wilson

Résumé

FR  |  
EN

Il y a une forte croissance, à nos jours, de «services» intelligents proposés aux clients sur les plates-formes de commerce électronique, destinés à une assistance personnalisée. L'étude de préférences a suscité un grand intérêt dans ce contexte, grâce à leur utilisation dans la résolution de problèmes liés à la prise de décision. En effet, la recherche sur les préférences en intelligence artificielle (IA) propose différentes manières d'aborder ce problème : de l'acquisition des préférences à leur représentation formelle et, éventuellement, à leur gestion suivant plusieurs méthodes de raisonnement. Dans cette thèse, nous adressons la problématique de la mise en œuvre de préférences comparatives pour l'aide à la décision par le développement d'un système interactif «intelligent» de recommandations personnalisées. Nous suivons une tendance récente, et le concevons sur une base de considérations psychologiques, linguistiques et personnelles. Nous contribuons ainsi aux domaines suivants de préférences en IA : (1) leur acquisition, (2) leur représentation, et (3) leur mise en œuvre. Nous examinons d'abord un goulot d'étranglement dans l'acquisition de préférences et proposons une méthode d'acquisition de préférences exprimées en langage naturel (LN), qui permet leur représentation formelle en tant que préférences comparatives. Nous étudions ensuite les aspects théoriques de la représentation et du raisonnement avec les préférences comparatives pour aide à la décision. Finalement, nous décrivons notre outil de recommandations qui utilise : (1) une base de données de produits qualifiée par une analyse de critiques d'utilisateurs, (2) une approche interactive pour guider les utilisateurs à exprimer leurs préférences comparatives, et (3) un moteur de raisonnement qui manipule ces préférences afin de proposer une recommandation basée sur les préférences de l'utilisateur.