Thèse soutenue

Supports biomimétiques actifs pour la différenciation de cellules souches mésenchymateuses : application à la régénération du cartilage

FR  |  
EN
Auteur / Autrice : Sophie Raisin
Direction : Emmanuel Belamie
Type : Thèse de doctorat
Discipline(s) : Chimie et physico-chimie des matériaux
Date : Soutenance le 28/10/2016
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....)
Jury : Examinateurs / Examinatrices : Emmanuel Belamie, Tristan Montier, Thierry Delair, Marie Morille, Catherine Levisage, Benjamin Nottelet
Rapporteurs / Rapporteuses : Tristan Montier, Thierry Delair

Résumé

FR  |  
EN

La conception de biomatériaux actifs est actuellement encouragée par le manque de thérapies régénératives efficaces pour des tissus endommagés présentant une faible capacité d’autoréparation. Les progrès récents concernant les techniques de préparation de matériaux structurés (électrospinning, microfluidique) ainsi que la découverte du fort potentiel régénératif des cellules souches ont suscité un regain d’intérêt pour des projets collaboratifs à l’interface entre biologie et sciences des matériaux. Une approche prometteuse de régénération tissulaire repose donc sur la combinaison de cellules souches et de biomatériaux implantables. Des biomatériaux innovants, injectables et servants à la fois de support aux cellules et de réservoir de molécules actives telles que des protéines ou des agents de thérapie génique (Matrice Génétiquement Activée) ont été développés. Se plaçant plus particulièrement dans le contexte de l’ingénierie du cartilage, ce travail a pour objectif de développer une stratégie complémentaire concernant l’orientation de la différenciation de cellules souches mésenchymateuses (CSM) grâce au mécanisme d’interférence ARN.La principale difficulté rencontrée lors de l’utilisation d’acides nucléiques pour induire la différenciation des CSM reste leur faible capacité à traverser les membranes cellulaires, due à leur nature hydrophile et leur charge négative. De plus, les acides nucléiques sont dégradés très facilement par les nucléases extracellulaires, ce qui rend nécessaire l’utilisation d’un vecteur. Les vecteurs non-viraux sont d’excellents candidats pour des applications in vivo en raison de leur faible coût de production et leur faible immunogénicité. Toutefois, la plupart des systèmes de vectorisation trouvés dans la littérature présentent un manque de reproductibilité associé à une cytotoxicité vis-à-vis des cellules primaires. Nous souhaitions donc développer un système de transfection synthétique à la fois efficace et biocompatible. Pour cela, nous nous sommes basés sur les résultats encourageants concernant l’utilisation des micelles de complexes polyioniques (PIC) pour la transfection des cellules dendritiques. Ces micelles sont formées par complexation de deux polyélectrolytes : un copolymère à blocs double-hydrophiles (CBDH) avec un bloc anionique et un homopolymère cationique. Dans ce travail, nous avons évalué le polyoxyde d’éthylène – b – polyacide méthacrylique en tant que CBDH et la poly-L-lysine ou le polyéthylènimine en tant que polycation. L’influence des caractéristiques des composantes (asymétrie du CBDH, nature du polycation, taille des blocs, ratio de charges…) sur les propriétés physico-chimiques des micelles formées (taille, charge de surface) a d’abord été étudiée. Puis, la possibilité de complexation d’un siRNA au sein des micelles ainsi que leur stabilité en conditions physiologiques ont été évaluées. La formulation des micelles a été conçue pour permettre une dissociation des objets à un pH comparable à celui des endosomes ; ceci a été vérifié par diffusion dynamique de la lumière. Une analyse par cytométrie en flux avec un siRNA marqué TAMRA ont démontré l’internalisation effective des micelles dans les CSM. Plus important encore, l’inhibition spécifique d’un gène cible, Runx2, a été démontrée à un niveau comparable à celui d’un vecteur commercial standard, la Lipofectamine2000®. La seconde partie de la thèse a consisté en l’élaboration de microparticules. A cet effet, nous avons préparé des microsphères de collagène par un dispositif de microfluidique, et ce à partir de diverses sources de collagène (murin, porcin, bovin). Des expériences préliminaires démontrent qu’il est possible d’imprégner les micelles dans les microsphères. De même, de premiers résultats encourageants ont été obtenus quant à la capacité du système globale à assurer l’adhésion cellulaire et permettre une transfection efficace des CSM dans un environnement 3D par les micelles PIC vectorisant un siRNA anti-Runx2.