Thèse soutenue

Développement d'électrodes modifiées et d'un bioréacteur électrochimique à flux continu pour une application aux biopiles microbiennes

FR  |  
EN
Auteur / Autrice : Joffrey Champavert
Direction : Christophe InnocentLaurence Preziosi
Type : Thèse de doctorat
Discipline(s) : Chimie et physico-chimie des matériaux
Date : Soutenance le 18/07/2016
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-....)
Partenaire(s) de recherche : Laboratoire : Institut Européen des membranes (Montpellier)
Jury : Examinateurs / Examinatrices : Christophe Innocent, Laurence Preziosi, Frédéric Barrière, Nicolas Bernet, Maxime Pontié
Rapporteur / Rapporteuse : Frédéric Barrière, Nicolas Bernet

Résumé

FR  |  
EN

Les biopiles microbiennes sont des sources d’énergies renouvelables utilisant des bactéries qui convertissent une énergie chimique en électricité. Pour cela, l’anode doit collecter les électrons issus des microorganismes. La sélection d’un matériau d’anode possédant de grandes performances est d’une importance cruciale dans la construction d’une biopile microbienne. Le graphène est considéré comme un matériau prometteur avec de grandes possibilités d’application dans de nombreux domaines tels que les batteries Li-ion, les cellules photovoltaïques et les super condensateurs électrochimiques en raison de sa structure nanométrique. Ainsi, la modification de surface par de l’oxyde de graphène réduit a été appliquée à la construction d’anodes pour biopiles microbiennes. La cathode abiotique a aussi été étudiée puisqu’elle présente souvent une limitation cinétique vis-à-vis de la réduction de l’oxygène. Les potentialités des complexes organométalliques, et en particulier les phthalocyanines de nickel, ont été étudiés et appliquées à la construction d’une cathode pour biopile. Ainsi, une biopile hybride à deux compartiments a été construite en combinant une bioanode en mousse d’acier inoxydable modifiée par de l’oxyde de graphène réduite et une cathode en feutre de carbone modifiée avec de la phthalocyanine de nickel. La biopile microbienne ainsi construite utilise du lixiviat de terreau, comme source de microorganismes, pour le développement d’un biofilm électroactif à l’anode et présente une bonne stabilité dans le temps. Le graphène a permis d’obtenir une densité de puissance stable pendant une période 40 jours (24.8 mW/m² en présence d’oxygène pur). La cathode présentée dans ce travail a permis d’obtenir une densité de puissance supérieure à une cathode de platine (7.5 fois supérieur). Par ailleurs, un nouveau design de biopile à deux compartiments a été construit, afin de produire de l’électricité à partir d’une souche pure : Pseudomonas aeruginosa qui est connu pour la formation de biofilm électroactive. Un nouveau design a été proposé, permettant de travailler à alimentation constante et non plus en batch comme cela se fait de manière classique. Cette configuration permet de ne plus avoir de diminution de courant liée à un manque d’apport en carburant. Différents paramètres ont ainsi été explorés tel que le débit d’alimentation, la consommation en glucose dans le compartiment anodique, la variation de pH au cours du temps ainsi que l’évolution de la biomasse. Une première approche d’étude de corrélation de ces différents paramètres est proposée.