Thèse soutenue

Modélisation de la variabilité des temps de parcours et son intégration dans des algorithmes de recherche du plus court chemin stochastique

FR  |  
EN
Auteur / Autrice : Raphaël Delhome
Direction : Nour-Eddin el-Faouzi FaouziRomain Billot
Type : Thèse de doctorat
Discipline(s) : Génie Civil
Date : Soutenance le 01/12/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Ecole nationale des travaux publics de l'Etat (Vaulx-en-Velin, Rhône ; 1975-....)
Laboratoire : Laboratoire d'Ingénierie Circulation Transport (Bron, Rhône)
Jury : Président / Présidente : Christine Solnon
Examinateurs / Examinatrices : Marie-José Huguet
Rapporteur / Rapporteuse : Aziz Moukrim, Mustapha Rachdi

Résumé

FR  |  
EN

La représentation des temps de parcours est un enjeu influençant la qualité de l’information transmise aux usagers des réseaux de transport. En particulier, la congestion constitue un inconvénient majeur dont la prise en compte n’est pas toujours maîtrisée au sein des calculateurs d’itinéraires. De même, les évènements comme les réductions de capacité, les perturbations climatiques, ou encore les pics de fréquentation incitent à dépasser la définition statique des temps de parcours. Des travaux antérieurs se sont focalisés sur des temps dynamiques, i.e. dépendants de la date de départ, de manière à affiner le détail de la représentation, et à prendre notamment en compte le caractère périodique des congestions. La considération d’informations en temps réel est aussi une amélioration indéniable, que ce soit lors de la préparation du trajet, ou lorsqu’il s’agit de s’adapter à des perturbations rencontrées en cours de route. Ceci dit, aussi fines qu’elles soient dans les calculateurs disponibles, ces modélisations présentent un inconvénient majeur : elles ne prennent pas en compte toutes les facettes de la variabilité des temps de parcours. Cette variabilité est très importante, en particulier si l’on considère le niveau d’aversion au risque des usagers. En outre, dans un réseau multimodal, les correspondances éventuelles rendent encore plus critique l’incertitude associée aux temps de parcours. En réponse à ces enjeux, les présents travaux de thèse ont ainsi été consacrés à l’étude de temps de parcours stochastiques, i.e. vus comme des variables aléatoires distribuées.Dans une première étape, nous nous intéressons à la modélisation statistique des temps de parcours et à la quantification de leur variabilité. Nous proposons l’utilisation d’un système de lois développé dans le domaine de l’hydrologie, la famille des lois de Halphen. Ces lois présentent les caractéristiques typiques des distributions de temps de parcours, elles vérifient par ailleurs la propriété de fermeture par l’addition sous certaines hypothèses afférentes à leurs paramètres. En exploitant les ratios de moments associés aux définitions de ces lois de probabilité, nous mettons également au point de nouveaux indicateurs de fiabilité, que nous confrontons avec la palette d’indicateurs classiquement utilisés. Cette approche holistique de la variabilité des temps de parcours nous semble ainsi ouvrir de nouvelles perspectives quant au niveau de détail de l’information, notamment à destination des gestionnaires de réseaux.Par la suite, nous étendons le cadre d’analyse aux réseaux, en utilisant les résultats obtenus à l’étape précédente. Différentes lois de probabilité sont ainsi testées dans le cadre de la recherche du plus court chemin stochastique. Cette première étude nous permet de dresser un panorama des chemins identifiés en fonction du choix de modélisation. S’il est montré que le choix du modèle est important, il s’agit surtout d’affirmer que le cadre stochastique est pertinent. Ensuite, nous soulevons la relative inefficacité des algorithmes de recherche du plus court chemin stochastique, ceux-ci nécessitant des temps de calcul incompatibles avec un passage à l’échelle industrielle. Pour pallier cette difficulté, un nouvel algorithme mettant en oeuvre une technique d’accélération tirée du cadre déterministe est développé dans la dernière partie de la thèse. Les résultats obtenus soulignent la pertinence de l’intégration de modèles stochastiques au sein des calculateurs d’itinéraires.