Thèse soutenue

Quelques aspects sur l'homologie de Borel-Moore dans le cadre de l'homotopie motivique : poids et G-théorie de Quillen
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Fangzhou Jin
Direction : Frédéric Déglise
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 12/12/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Unité de Mathématiques Pures et Appliquées (Lyon ; 1991-....)
Jury : Président / Présidente : Bruno Klingler
Examinateurs / Examinatrices : Frédéric Déglise, Bruno Klingler, Jörg Wildeshaus, Johannes Nagel, Wiesława Nizioł, Florence Lecomte
Rapporteurs / Rapporteuses : Marc Noel Levine, Jörg Wildeshaus

Résumé

FR  |  
EN

Le thème de cette thèse est les différents aspects de la théorie de Borel-Moore dans le monde motivique. Classiquement, sur le corps des nombres complexes, l’homologie de Borel-Moore, aussi appelée “homologie à support compact”, possède des propriétés assez différentes comparée avec l’homologie singulière. Dans cette thèse on étudiera quelques généralisations et applications de cette théorie dans les catégories triangulées de motifs.La thèse est composée de deux parties. Dans la première partie on définit l'homologie motivique de Borel-Moore dans les catégories triangulées de motifs mixtes définies par Cisinski et Déglise et étudie ses diverses propriétés fonctorielles, tout particulièrement une fonctorialité analogue au morphisme de Gysin raffiné défini par Fulton. Ces résultats nous serviront ensuite à identifier le coeur de la structure de poids de Chow définie par Hébert et Bondarko: il se trouve que le coeur, autrement dit la catégorie des éléments de poids zéro, est équivalente à une version relative des motifs purs de Chow sur une base définie par Corti et Hanamura.Dans la deuxième partie on démontre la représentabilité de la G-théorie de Quillen, sous la reformulation de Thomason, dans un premier temps dans la catégorie A1-homotopique des schémas de Morel-Voevodsky, mais aussi dans la catégorie homotopique stable construite par Jardine. On établit une identification de celle-ci comme la théorie de Borel-Moore associée à la K-théorie algébrique, en utilisant le formalisme des six foncteurs établi par Ayoub et Cisinski-Déglise.