Sondes organiques implantables pour l’enregistrement in vivo de l’activité électrophysiologique et le relarguage de drogues
Auteur / Autrice : | Ilke Uguz |
Direction : | George Malliaras |
Type : | Thèse de doctorat |
Discipline(s) : | Microélectronique |
Date : | Soutenance le 21/11/2016 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale Sciences Ingénierie Santé (Saint-Etienne) |
Partenaire(s) de recherche : | Entreprise : Microvitae |
Laboratoire : Département Bioélectronique | |
Jury : | Président / Présidente : Christophe Bernard |
Examinateurs / Examinatrices : George Malliaras, Christophe Bernard, Alberto Salleo, Stéphanie Lacour, Inal Sahika | |
Rapporteur / Rapporteuse : Alberto Salleo, Stéphanie Lacour |
Résumé
L’enregistrement et la stimulation in vivo de l’activité neuronale peuvent aussi bien servir pour la recherche médicale que pour les interfaces cerveau-machine. Les dispositifs à base d’électronique organique sont de prometteurs candidats pour ce faire, grâce à leur flexibilité et leur biocompatibilité. Le contrôle local de l’activité neuronale est la clé de nombreuses stratégies thérapeutiques visant à traiter les troubles neurologiques. Une solution idéale serait donc de fabriquer un dispositif capable de détecter l’activité neuronale et, en réponse, d’injecter des molécules endogènes. L’un des objectifs de cette thèse est de s’attaquer à cette problématique à l’aide d’un dispositif permettant à la fois de stimuler les cellules, et de mesurer l’activité neuronale, au même endroit, à l’échelle cellulaire. Nous présentons un dispositif organique capable de délivrer précisément des neurotransmetteurs in vitro et in vivo. En convertissant un signal électrique en la délivrance de neurotransmetteurs, le dispositif mime le fonctionnement d’une synapse. Le neurotransmetteur inhibiteur, l’acide γ- aminobutyrique (GABA), est relargué au niveau des électrodes d’enregistrement par l’activation d’une pompe ionique électronique. L’injection du GABA engendre l’arrêt de l’activité épileptique qui a été enregistré au niveau des électrodes. Des dispositifs multifonctionnels ouvrent de nombreuses possibilités, incluant des dispositifs thérapeutiques avec des boucles de retour, avec lesquels l’enregistrement local de signaux régule la délivrance d’agents thérapeutiques. De plus, nous avons également réalisé pendant cette thèse l’intégration de transistors organiques sur un film organique ultra fin, pour mesurer les signaux électrophysiologiques in vivo à la surface d’un cerveau de rat. Le dispositif, implanté de façon épidurale, montre des résultats surpassant certains dispositifs subduraux de taille similaire, permettant ainsi une approche moins invasive et efficace pour mesurer l’activité neuronale.