Thèse soutenue

Modélisation et analyse numériques des échanges de chaleur et de masse dans un réacteur de stockage de chaleur par adsorption : Influence des propriétés des matériaux, des conditions opératoires et du système sur les performances de stockage

FR  |  
EN
Auteur / Autrice : Damien Gondre
Direction : Frédéric Kuznik
Type : Thèse de doctorat
Discipline(s) : Thermique
Date : Soutenance le 21/03/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) - Centre d'Energétique et de Thermique de Lyon
établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Jury : Président / Présidente : Jean-Jacques Roux
Examinateurs / Examinatrices : Frédéric Kuznik, Jean-Jacques Roux, Michel Pons, Jean Toutain, Loïc Favergeon, Kévyn Johannes, Henner Kerskes, Lingai Luo
Rapporteurs / Rapporteuses : Michel Pons, Jean Toutain

Résumé

FR  |  
EN

Le développement de solutions de stockage de l'énergie est un défi majeur pour permettre la transition énergétique d'un mix énergétique fortement carboné vers une part plus importante des énergies renouvelables. La nécessité de stocker de l'énergie vient de la dissociation, spatiale et temporelle, entre la source et la demande d'énergie. Stocker de l'énergie répond à deux besoins principaux : disposer d'énergie à l'endroit et au moment où on en a besoin. La consommation de chaleur à basse température (pour le chauffage des logements et des bureaux) représente une part importante de la consommation totale d'énergie (environ 35 % en France en 2010). Le développement de solutions de stockage de chaleur est donc d'une grande importance, d'autant plus avec la montée en puissance des énergies renouvelables. Parmi les technologies de stockage envisageables, le stockage par adsorption semble être le meilleur compromis en termes de densité de stockage et de maintient des performances sur plusieurs cycles de charge-décharge. Cette thèse se focalise donc sur le stockage de chaleur par adsorption, et traite de l'amélioration des performances du stockage et de l'intégration du système au bâtiment. L'approche développée pour répondre à ces questions est numérique. L'influence des propriétés thermophysiques de l'adsorbant et du fluide sur la densité de puissance d'une part, mais aussi sur la densité de stockage et l'autonomie du système, est étudiée. L'analyse des résultats permet de sélectionner les propriétés des matériaux les plus influentes et de mieux comprendre les transferts de chaleur et de masse au sein du réacteur. L'influence des conditions opératoires est aussi mise en avant. Enfin, il est montré que la capacité de stockage est linéairement dépendante du volume de matériau, tandis que la puissance dépend de la surface de section et que l'autonomie dépend de la longueur du lit d'adsorbant. Par ailleurs, le rapport entre l'énergie absorbée (charge) et relâchée (décharge) est d'environ 70 %. Mais pendant la phase de charge, environ 60 % de la chaleur entrant dans le réacteur n'est pas absorbée et est directement relâchée à la sortie. La conversion globale entre l'énergie récupérable et l'énergie fournie n'est donc que de 25 %. Cela montre qu'un système de stockage de chaleur par adsorption ne peut pas être pensé comme un système autonome mais doit être intégré aux autres systèmes de chauffage du bâtiment et aux lois de commande qui les régissent. Utiliser la ressource solaire pour le préchauffage du réacteur est une idée intéressante car elle améliore l’efficacité de la charge et permet une réutilisation de la part récupérée en sortie pour le chauffage direct du bâtiment. La part stockée sous forme sensible peut être récupérée plusieurs heures plus tard. Le système est ainsi transformé en un stockage combiné sensible/adsorption, avec une solution pour du stockage à long terme et pour du stockage à court terme.