Thèse soutenue

Suivi numérique des bifurcations pour l'analyse paramétrique de la dynamique non-linéaire des rotors

FR  |  
EN
Auteur / Autrice : Lihan Xie
Direction : Régis Dufour
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 03/03/2016
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....) - Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] / LaMCoS
Jury : Président / Présidente : David Dureisseix
Examinateurs / Examinatrices : Régis Dufour, David Dureisseix, Gaëtan Kerschen, Mathias Legrand, Sébastien Baguet, Benoit Prabel
Rapporteurs / Rapporteuses : Gaëtan Kerschen, Mathias Legrand

Résumé

FR  |  
EN

Au cœur des moyens de transport, de transformation d'énergie, et de biens d'équipements, les machines tournantes peuvent avoir des comportements dynamiques complexes dus à de multiples sources de non linéarités liées aux paliers hydrodynamiques, à la présence de fissures, aux touches rotor-stator, ... Des phénomènes comme les décalages fréquentiels et donc de vitesses critiques, les cycles d'hystérésis avec sauts d'amplitudes, le changement brutal du contenu fréquentiel des réponses, sont des expressions de ces comportements. Résoudre les équations du mouvement induites par des modélisations avec des éléments finis de type poutre ou volumique, pour calculer les réponses à des sollicitations diverses (comme le balourd ou le poids propre), est réalisable avec des méthodes d'intégration pas à pas dans le temps mais au prix de temps de calcul prohibitifs. Cela devient particulièrement préjudiciable au stade du pré-dimensionnement où il est nécessaire de réaliser rapidement des études paramétriques. Aussi une alternative intéressante est de mettre en {\oe}uvre une méthode numérique, à la fois générale et efficace pour analyser la réponse non linéaire des rotors en régime stationnaire. La démarche proposée combine, dans un premier temps, la méthode de la balance harmonique (HBM) et la technique de bascule Temps-Fréquence (AFT) afin d'obtenir rapidement dans le domaine fréquentiel les réponses périodiques des rotors à grand nombre de degrés de liberté apportés par les éléments finis volumiques. Puis, l'association à la méthode de continuation par pseudo-longueur d'arc aboutit à établir continûment l'ensemble des solutions d'équilibre dynamique sur la plage de vitesse de rotation. Enfin la stabilité dynamique locale de la solution périodique est analysée grâce à des indicateurs de bifurcation basés sur l'évolution des exposants de Floquet. Ainsi sont détectées les bifurcations de branches de solutions périodiques de type point limite, point de branchement et notamment Neimark-Sacker. Leur localisation est déterminée précisément en résolvant un système augmenté constitué de l'équation du mouvement et d'une équation supplémentaire caractérisant le type de bifurcation considéré. En déclarant un paramètre du système (coefficient de frottement, jeu rotor/stator, amplitude de l'excitation,...) comme nouvelle variable, l'utilisation de la technique de continuation conjointement avec le système augmenté détermine directement le cheminement des bifurcations en fonction de ce paramètre sur la nappe des réponses non linéaires. Les suivis de bifurcations délimitent les zones de fonctionnement spécifiques, extraient efficacement l'essentiel du comportement dynamique et offrent ainsi une nouvelle approche pour dimensionner de façon efficace les systèmes notamment en rotation. Nombre des développements réalisés sont implantés dans le code de calcul Cast3M.