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Abstract

Noise and vibration are important topics in the automotive industry for several
reasons, including passenger comfort and structural integrity. The main objective
of this thesis is to propose a series of appropriate methods to optimize structural
system characteristics, so that the vibration and noise can be reduced. To achieve
this goal, interface control strategies are employed, including bonding viscoelastic
layers onto the most heavily deformed zones and introducing frictional damping
devices calibrated on certain resonance frequencies. Such built-up structural sys-
tems are numerically investigated via a generalized modal synthesis approach that
incorporates several groups of modes.

The employed modal synthesis approach consists of several levels of conden-
sation. The first one is on the internal degrees of freedoms (DOFs) of each sub-
structure, and the second condensation is on the branch modes so as to reduce the
boundary DOFs among substructures. For coupled fluid-structural systems, a third
condensation on the fluid DOFs is suggested. With these condensation techniques,
the system dimension can be significantly reduced. The method allows us to obtain
the forced response of the structures as well as the pressure variation of the fluids.

Additionally, modal parameters characterizing vibration and noise transmission
paths can be deduced as mid-stage results. We show that these modal parameters
can be used as optimization objective during the interface configuration design. The
Pareto front of the optimal design is achieved by employing Kriging approximations
followed with an elitist multi-objective genetic algorithm. Another advantage of the
modal approach is that a modal overview on the system characteristics is provided
by analyzing the natural frequencies, modal damping ratios and the aforementioned
modal parameters.

The modal synthesis approach is further extended to study nonlinear systems.
The basic assumption is that the nonlinear modes are weakly coupled. Nonlinear
modal parameters, such as modal frequency and modal damping ratio, contain the
essential nonlinear information and depend on modal amplitude. The main idea
is to compute nonlinear normal modes according to their modal amplitude and
superimpose the response of several nonlinear modes to obtain the overall forced
response. The method is applied to systems involving Duffing and dry friction
nonlinearities. In the case of dry friction, a generalized Masing model is considered
to capture the dry friction nature. Both complex modes and real modes are used
in the modal synthesis, leading to different frictional damping terms. We show that
the nonlinear modal synthesis combined with the generalized Masing model yields
a simple, fast and efficient numerical method to describe nonlinear performance of
structures with dry friction.

Keywords: Modal synthesis, interface control, model reduction, fluid-structural
coupling, multi-objective optimization, nonlinear mode



vi



Résumé

Dans le processus de conception des véhicules, la vibration et le bruit sont des
sujets d’étude très importants. En effet, les vibrations sont susceptibles d’affecter
le comportement dynamique des structures et le bruit dégrade le confort acoustique
des passagers. L’objectif principal de la thèse est de proposer un ensemble de méth-
odes pour l’optimisation du comportement dynamique des systèmes complexes afin
de réduire les vibrations des structures et le bruit dans l’habitacle. À cet effet, on
s’intéresse à des stratégies de contrôle des interfaces, comme le collage de couches
viscoélastiques sur les zones les plus déformées, ou l’introduction de dispositifs frot-
tants calibrés pour ajouter de l’amortissement à certaines fréquences de résonance.
Les structures assemblées résultantes sont étudiées numériquement par une méthode
de synthèse modale généralisée.

La méthode de synthèse modale proposée contient plusieurs niveaux de con-
densation. Le premier concerne les degrés de libertés (DDL) internes de chaque
sous-structure. La deuxième condensation s’effectue sur les modes de branches, de
sorte à réduire le nombre de DDL aux interfaces entre les sous-structures. Pour les
systèmes couplés fluide/structure, une troisième condensation portant sur les DDL
du fluide est proposée. Suite à ces condensations, la dimension du système est forte-
ment réduite. Cette méthode permet alors d’obtenir aussi bien la réponse forcée de
la structure que les fluctuations du champ de pression dans le fluide.

Les chemins de transmission acoustiques et vibratoires peuvent également
être déduits des contributions modales intermédiaires. On montre que ces
paramètres modaux peuvent être utilisés comme fonctions objectif pour une dé-
marche d’optimisation des interfaces. Le front de Pareto des conceptions optimales
est obtenu avec un algorithme génétique multi-objectif élitiste, appliqué à une ap-
proximation par krigeage de la fonction objectif.

Cette approche modale est étendue à l’étude de systèmes non-linéaires.
L’hypothèse fondamentale est que les modes non-linéaires sont faiblement cou-
plés. Les paramètres modaux non-linéaires (fréquences propres, amortissements...),
dépendent des amplitudes modales. L’idée est alors de calculer des modes normaux
non-linéaires en fonction de leur amplitude et de superposer leurs réponses pour
obtenir celle de la structure. La méthode est appliquée à des systèmes incorporant
des non-linéarités de type Duffing et de frottement sec. Le cas particulier du frotte-
ment sec est considéré à travers un modèle de Masing généralisé. Deux approches
modales sont développées : l’une basée sur les modes complexes, et l’autre basée sur
les modes réels. L’utilisation de modes complexes ou réels dans la synthèse modale
conduit à des termes d’amortissement par frottement différents. On montre que
la synthèse modale non-linéaire combinée au modèle de Masing généralisé aboutit
à une méthode numérique simple, rapide et efficace pour décrire le comportement
non-linéaire de structures soumise à du frottement sec.

Mots-clés: Synthèse modale, contrôle d’interfaces, réduction de modèle, inter-
action fluide-structure, optimisation multi-objectif, mode non-linéaire
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Industrial background

In vehicle design, vibration and noise have always been the hot topics for the auto-
motive industry and vehicle manufacturers. Vibration and noise damage system’s
performance and degrade user’s comfort. The increased competition in vehicle in-
dustry market requires vehicle’s vibration and noise characteristics to be well opti-
mized.

It should be recognized that there are many trade-offs between Noise&Vibration
requirements, weight, cost, development time, etc. A compromise must be reached
in the development process. The emphasis on lightweight vehicle structures, as im-
posed by financial and energy cost constraints, has in many cases resulted in a more
significant decrease in structural stiffness than the actual mass savings. As such,
the resonance frequencies of these streamlined structures have been considerably
lowered and often disturb dynamic behavior in the frequency domain when associ-
ated with loadings applied on the structure. Moreover, in the process of designing
vehicle systems, passengers’ acoustic comfort is becoming increasingly important.
The human ear is sensitive to air vibrations from about 20 Hz to 20,000 Hz, the
most sensitive frequency range is between 100 Hz and 5 kHz, which is also the
frequency range of most annoying vibrations of mechanical equipment. Structural
and acoustic resonances can amplify the excitation load and degrade severely the
acoustic comfort in the carriage. Since one cannot avoid resonances altogether, it
is very important to consider the dislocation of resonant frequencies during vehicle
design. In order to reduce vehicle development cost and time, an improved vehicle
development process should be proposed.

This thesis is ongoing in the context of OpenLab PSA VAT@Lyon. OpenLab
is a mixed research structures that pool research teams and experimental resources
from the Group and partner laboratories. OpenLabs are the essential elements in
the network of the StelLab (Science & Technologies Exploratory Lean LABoratory).
StelLab is PSA Group’s scientific innovation entity and was founded in 2010. StelLab
is established in the context of continuous requirements of successful innovation and
technological breakthroughs in the design of the future vehicles. This mission of the
StelLab is searching for a broad scope of opportunities to cut development costs, to
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detect new trends and to reduce the time-to-market. Up to now, StelLab comprises
some 100 PSA Peugeot Citroën scientists, 12 OpenLabs and six university chairs in
Europe, China and Latin America. This thesis belongs to Lot-Z of OpenLab with
the innovation cell located in Lyon.

In this thesis program, research work will focus on a widespread strategy that
calls for introducing damping systems into the interfaces between substructures
or between two isolated points of the structure. One thesis objective is to propose
adapted methods that optimize system characteristics to control vibration levels and
improve acoustic comfort of vehicle structures. These suggested methods would be
based on a generalized modal synthesis that incorporates both interface modes and
excitation modes. Several damping sources will be examined: viscoelastic materials,
solid-solid friction along the continuous interfaces. Moreover, active or semi-active
devices will be conceived in order to improve performance.

Motivation of the work

The research conducted in this thesis aimes at exploring efficient methods to op-
timize system performance. The systems considered herein are linear assembled
structures, coupled fluid-structure systems, and nonlinear structures. To reduce the
vibration level and improve the acoustic comfort in the systems, both passive inter-
face control and dry friction dampers for the optimization object were investigated.
The work can be related to five main axes:

1) The generalized modal synthesis methods for assembled structures and cou-
pled fluid-structure systems. The underlying idea is to reduce large-sized structures
to smaller size, while maintaining sufficient information to describe the dynamic
performance of the system. Physical space is projected to modal space with a trans-
formation matrix by means of acoustic modes, interface modes and excitation modes.
Physical DOFs are projected to generalized modal coordinates, which represent a
smaller size dimension.

2) The understanding of dynamic performance of the system from a modal
overview. Modal parameters can be deduced from the generalized modal synthesis.
By analyzing these modal parameters, responsible mode for resonance can be iden-
tified. Modal criteria indicating vibration and noise transmission in the system can
also be determined based on the modal synthesis. Structural modification can be
carried out by examining these modal criteria.

3) Optimization for linear assembled structures and coupled fluid-structure sys-
tems were conducted. Kriging approximation is employed to surrogate physical
models with mathematical models thanks to its meta-modeling capability. A ge-
netic algorithm is then used to solve the optimization problem with the meta-models
constructed with Kriging approximation.

4) Extension to nonlinear modal synthesis is investigated since real industrial
cases are of nonlinear nature. Nonlinear mode concept is thus combined with reduc-
tion techniques wildly applied in linear cases by using excitation modes, branch



General introduction xxix

modes and constraint modes. Steady-state responses can be calculated with a
smaller-size model. Nonlinear modal parameters depending on modal amplitude
are derived from the nonlinear modal synthesis. These nonlinear modal parameters
that can evaluate nonlinear phenomena are studied.

5) Passive interface control and dry friction damper are investigated as means
to reduce the vibration level of the system. As passive interface control, viscoelas-
tic rubber layers are padded on the interfaces between substructures; an optimized
rubber layer configuration is expected in the design process by using the proposed
optimization strategy. Dry friction dampers renders the system of nonlinear nature;
nonlinear modal synthesis integrating dry friction model is thus required for analyz-
ing systems involving dry friction dampers; an optimized normal force applied on
the damper is expected to maximizing structural damping.

Organization of the dissertation

The brief outline of the thesis is listed as follows: the background and the motivation
of this work are briefly presented in the general introduction; then according to the
nature of investigated structures, linear or nonlinear, the dissertation is divided in
two parts: optimization of large systems by means of passive interface control based
on hybrid modal synthesis method; the extensions of modal synthesis to analyze
nonlinear systems.

In Part I, generalized modal synthesis methods and optimization strategy for
linear systems are shown in Chapters 1, 2, and 3.

In the introduction of Part I, the basic theoretical aspects concerned in the
part are presented, including: linear modal synthesis, passive control strategies and
optimization techniques.

In Chapter 1, the basic theoretical formulation for an assembled structure model,
along with the extensive double modal synthesis method by means of interface modes
and excitation modes is presented; modal parameters characterizing vibration trans-
mission in the system are derived based on this double modal synthesis;

In Chapter 2, the formulation of a coupled fluid-structure system is introduced;
the implementation of a generalized triple modal synthesis by means of acoustic
modes, interface modes and excitation modes is presented; and modal parameters
indicating noise transmission in the system is proposed based on this triple modal
synthesis;

In Chapter 3, interpolations techniques and optimization techniques are outlined;
the theoretical basis of Kriging approximation for the construction of surrogate mod-
els is presented; and a multi-objective optimization strategy is presented to achieve
Pareto optimal; the fundamental concepts and procedures of a multi-objective op-
timization strategy by means of an elitist genetic optimization algorithm is sum-
marized. Two study cases are performed by using the aforementioned strategies in
Chapter 1 and 2, and the simulation results are also discussed. An assembled plates
model with an continuous interfaces is analyzed based on double modal synthesis
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described in Chapter 1; A coupled fluid-structure model is investigated based on
triple modal synthesis described in Chapter 2; the optimal rubber layer configu-
ration for these two cases are found out by employing the optimization procedure
based on modal parameters presented in Chapter 3.

In Part II, The implementation of an extensive nonlinear modal synthesis by
combining nonlinear mode concept and modal synthesis techniques is presented.
Nonlinear structures with continuous nonlinear interface are studied in Chapter 4.
The dynamic behavior of nonlinear structures involving dry friction is examined in
Chapter 5.

In the introduction of Part II, numerical methods for analyzing nonlinear struc-
tures are briefly reviewed. The vibration control by introducing dry friction dampers
are summarized, along with a brief overview of typical dry friction models.

In Chapter 4, the theoretical basis of the nonlinear modal analysis method is
presented; modal parameters are proposed based on the nonlinear modal synthesis;
both numerical and analytical methods for calculating forced responses of harmon-
ically excited systems are given; then how reduction techniques are integrated into
the nonlinear modal analysis by means of interface modes, excitation modes and
constraint modes is depicted; the proposed strategy is then applied to an assembled
model composed of plates and nonlinear rubber material interfaces for validation
purposes.

In Chapter 5, dry friction models used in the literature are briefly reviewed; the
generalized Masing model is presented, which is employed as dry friction model in
the following analysis; the implementation of a time integration method Newmark-
β is outlined for calculating transient responses; the harmonic balance method is
introduced to calculate the periodic responses of nonlinear systems under periodic
excitation; nonlinear modal synthesis methods to compute steady state response
of the system are depicted; modal parameters are also derived; in relying on these
numerical methods, case studies are carried out: one study case of a 2 DOFs model
is used to illustrate the proposed method; another study case of cantilever beam is
used for validation purpose.

Concluding remarks and discussions concerning the perspective work are syn-
thesized in Chapter 5.7.2.

The first appendix outlines theoretical aspects of Kriging approximations for in-
terpolation purpose used in Chapter 3. The second appendix gives supplementary
material of the elitist multi-objective genetic algorithm for optimization purpose
used in Chapter 3. The third appendix presents the detailed derivation and discus-
sions of the nonlinear branch modal synthesis, which has been developed in parallel
with reduced nonlinear modal synthesis in Chapter 4. The fourth appendix provides
supplementary discussions on the frictional damping ratio used in Chapter 5.
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Optimization of passive interfaces
for vibration control of linear

systems
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Abstract: The characteristics of the interfaces between substructures play an
important role in controlling the dynamic vibration of large structures. In this part,
we have proposed a strategy to obtain an optimal interface configuration for both
assembled structures and coupled fluid-structure systems. The assembled structures
are analyzed by using excitation modes, interface modes and constraint modes; the
coupled fluid-structure systems are studied by employing acoustic modes, excitation
modes, interface modes and constraint modes. Based on the proposed modal synthe-
sis approach, the steady-state responses of the investigated systems in the interested
frequency band can be evaluated by two strategies: the first consists in calculating
the dynamic response by employing an extensive modal synthesis; the second con-
cerns using modal parameters characterizing vibration transmission paths or noise
transmission paths between substructures in the system, which can also provide a
modal overview of the dynamic behavior. Our objective consists in searching the
optimal configuration of the elastic layer padding on the interface to minimize the
vibration level and improve the acoustic comfort of a vehicle system. The optimiza-
tion criteria are substituted by Kriging interpolation models to avoid prohibitive
simulation steps during optimization of the complex system. Once the mathemati-
cal models of the investigated modal criteria are established and the multi-objective
functions for rubber characteristics defined, an approximate optimal solution leading
to superior dynamic performance could be obtained based on a genetic algorithm.
The analytical results and numerical experiments conducted have also justified the
efficiency of our proposed strategy.





Part 1: Introduction

Linear modal synthesis used in analyzing industrial structures
In order to reduce vehicle development cost and time, an improved vehicle devel-

opment process should be proposed. To analyze the noise and vibration problems,
frequency analysis is powerful for identifying noise sources and enables the effec-
tiveness of noise control measures to be assessed. Modal analysis is a mathematical
tool that enables engineers to determine characteristic values that describe the res-
onances and then to build an analytical model from this information. It permits
determining the natural mode shapes and frequencies of the structure during free
vibration and is independent on the external load. Modes are inherent properties of
a structure, and are determined by the material properties and boundary conditions
of the structure. If the stiffness of the structure is modified, it will vibrate differently
and resonant frequency will be different.

For the convenience of the analytical simulations, great interest has consis-
tently been shown in employing dynamic sub-structuring and component mode
synthesis (CMS) to reduce the degrees of freedom (DOFs) of large complex sys-
tems since 1960 [Hurty 1960]. A brief review of dynamic sub-structuring can be
found in [Klerk 2008]. CMS can be implemented in the system design process for
industrial applications, e.g. automotive applications [Vermot 2010]. The strategy of
CMS is to project the physical space onto the modal space. Instead of confining all
physical information to the physical space, only essential modes in the modal space
are retained. Using a transformation matrix, the physical space is projected onto
the modal space. This step significantly reduces the problem size.

For systems with flexible physical interfaces, a clarification about component
mode synthesis methods has been provided in [Ohayon 2014]. Fixed interface
modes were first introduced to describe substructures by Hurty [Hurty 1971]. A
method combining constraints modes and fixed interface modes was proposed by
Craig and Bampton [Craig 1968]; They proposed condensing modes on the inter-
face by retaining the fundamental modes of the structure; The mode shape infor-
mation includes all boundary modes expressed in physical coordinates, along with
truncated elastic modes expressed in modal coordinates. For a further reduction,
Gladwell [Gladwell 1964] was one of the first to introduce branch mode analysis, in
which each component of a complex continuous vibrating system is replaced by an
appropriate lumped mass model. By imposing certain sets of constraints on the sys-
tem, the principal modes of the constraint system can thus be obtained. It has been
proven that accurate results may be found by using a sufficient number of degrees of
freedom [Gladwell 1964]. This branch modal synthesis has been further developed by
Jézéquel et al. [Jézéquel 1994a, Jezequel 1994b, Besset 2008a, Huang 2016]. Model
reduction techniques for structural dynamics were compared in [Besselink 2013].

Double modal synthesis [Besset 2008b, Brizard 2012] is a hybrid approach
based on the fixed interface modes, the constraint modes and the branch modes.
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Compared to the method proposed by Craig and Bampton, the advantage of this
double modal synthesis lies in the fact that the boundary DOFs are also reduced.
Moreover, the truncation effect can be mitigated by adding a second-order ω2

term, as described in [Jézéquel 1994a]. In our study, the double modal synthesis
method has been extended by distinguishing excitation sets from boundary sets,
i.e. excitation modes are presented in physical coordinates while boundary modes
are presented in modal coordinates, since excitation modes provide important
information yet in most cases are small in size. Reduction techniques in CMS are
generally accompanied by a reduction coefficient so as to indicate how many modes
are harmonically retained for each substructure. Avitabile has offered a fairly
complete analysis of the truncation effect on results when studying the structural
dynamic performance in [Avitabile 1990]. Reduction coefficient α is defined as
follows: if the frequency band in this study varies from 0 to ωmax, then the number
of modes retained for each part of the system, corresponding to their natural
frequency, extends to α ∗ ωmax during the reduction step.

For a structural-acoustic problem, the fields of interest are the displacement and
the pressure field in the internal fluid. In order to calculate the vibration of complex
structures and noise level in the fluid, appropriate numerical formulations are re-
quired. A proper fluid-structure interaction model should be constructed. In order
to reduce structure-borne vibration and noise, changing the system’s stiffness to al-
ter the resonance frequencies permits reducing the unwanted vibration in a narrow
band of frequency. Most efforts to reduce acoustic sensitivity via body structural
modifications have involved increasing body stiffness while damping treatments are
often used to reduce the overall vibration and noise levels. It should be noted that
mass, stiffness, and damping changes will affect different modes differently. Damping
treatments usually help to reduce the vibration response at panel resonances.

When analyzing coupled fluid-structure systems, acoustic modes will be
presented and integrated into modal synthesis approach to characterize the fluid
behavior. This is the so called triple modal synthesis [Besset 2008a].

Vibration performance of dynamic structures can be featured by modal param-
eters based on modal synthesis. [Chen 2006] presented methods for determining
the modified modal parameters in a structural dynamic modification analysis when
the structural modifications are relatively large. As another solution when studying
the dynamic characteristics of structures, the structure’s modal parameters were
introduced in [Lemerle 1994]. These modal parameters are expressed in terms
of dynamic flexibility and transmissibility. This strategy was then extended for
vibro-acoustic systems in [Besset 2008a]. Since the proposed criteria are small in
size, i.e. equal to the size of substructures, the computational cost can be consid-
erably reduced if the optimization process is based on these modal parameters.
Furthermore, these criteria provide a modal overview of the dynamic phenomena.
In this study, the modal criteria are defined so as to describe the noise transmission
paths between substructures. Attention is paid to those paths involving interfaces
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that rely on rubber layer characteristics. An analysis of these criteria enables
identifying both the modes and paths responsible for pressure variations in the
cavity. A sensitivity study of these criteria has been performed to subsequently
sort out the crucial criteria that serve for optimization purposes.

Passive control strategies
In order to mitigate the influence of these resonance modes, the classical ap-

proach consists in damping the modes by employing the following strategies: Intro-
duction of damped resonators calibrated on the first resonance frequencies; Bonding
of viscoelastic layers onto the most heavily deformed zones. The mechanic energy
can be transformed into thermal energy by damping treatment. The use of damp-
ing treatment in the automotive and aerospace industries is made possible by the
advancements in manufacturing processes. Sometimes the best option for control
of unwanted vibration can be adding supplemental dampers, which permits dislo-
cations of resonant frequencies in the system, which is essentially dominated by the
mass matrix and the stiffness matrix of the structures. This is especially useful when
the vibration issue occurs for a single frequency, or across a very narrow frequency
range.

Complex systems like industrial vehicles are composed of many substructures,
which in general are connected by interfaces as shown in Figure 1. Hence, inter-
face characteristics prove to be crucial for the behavior of global systems. The
typical focus of studies in structural dynamic modifications include [Avitabile 2003,
Cruz 2011, Duhem 1980, Gobbi 2006]: 1) influences of simplistic structural stiffness
changes on predicted frequencies and mode shapes; 2) determination of structural
characteristic changes to shift a given resonance; and 3) the impacts of adding joints
on the modal characteristics of a system. Local modifications applied to interfaces
between the substructures investigated in this work belong to the second category.

Viscoelastic material is used for vibration control by applying them to areas
that have high vibration amplitudes during resonance, for example interfaces of
sheet metals that are under resonance. A typical viscoelastic damper consists in
bonding viscoelastic layers to steel plates. When mounted in a structure, shear
deformation and hence energy dissipation takes place when the structural vibra-
tion induces relative motion between the outer steel flanges and the center plate.
Viscoelastic materials are in general polymeric materials, such as plastics, rubbers,
acrylics, silicones, vinyl, adhesives, urethanes, epoxies, etc., which have long-chain
molecules exhibit viscoelastic behavior. The dynamic properties of linear viscoelas-
tic materials can be represented by their modulus. Thus by properly selecting the
modulus of these viscoelastic layers, the structure vibration can be reduced. The
basis principle in the design is to apply the viscoelastic material in such a way that
it is significantly strained whenever the structure is deformed in the vibration mode
under investigation. The dynamic responses of the system can thus be controlled
by regulating the resonant frequencies and the associated damping ratio.

Rubber bushings are extensively used to link parts in a vehicle chassis, thus
making it possible to filter noise and vibration [Puel 2013]. The control of vibration
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Figure 1: Assembled vehicle structural system

and noise in vehicles have several difficulties, mainly lying in the complexity of the
system. Moreover, the design of the viscoelastically damped structures by padding
rubber layer is an iterative process: First, an analysis of the structure without
added rubber layer should be carried out. Then the required criteria become
the primary design objective for adding viscoelastic dampers to the structure;
and the characteristics of the viscoelastic material become the design parameters.
The design consists in the following steps: a) determine structural properties of
the structure and perform structural analysis; b) determine the desired objective
function for optimization; c) define design parameters representing damper charac-
teristics; e) perform structural analysis and calculate the objective function using
the design parameters. When steps (e) satisfy the desired criteria and the structural
performance criteria, the design is complete. Otherwise, new design cycle will be
recomputed leading to new damper dimensions and properties. This procedure
may continue to update the structural properties after each design cycle. That is
why efficient numerical methods are required, especially during the optimization
process of large complex systems.

Optimization strategy
An interesting review of optimization in a dynamic environment has been pre-

sented in [Cruz 2011]. This review has confirmed that most studies in the given
industrial context are conducted based on synthetic problems, where the complex-
ity of the objective function and degree of dynamism are controllable. Even with the
most efficient criteria, optimization may be prohibitively expensive. In this context,
a simplified mathematical model has been built to save on computational cost. The
speed of simulating a pure mathematical model is 10 to 10, 000 times faster than
that of an original physical model [Gobbi 2006]. The state-of-the-art for construct-
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ing surrogate models and their applications in optimization strategies were reviewed
in [Henderson 2006, Forrester 2009]. Various series of techniques exist to perform
this approximation, from a simple polynomial interpolation to more accurate repre-
sentative functions such as radial-based neural networks [Másson 1990] or Kriging
models [Ruzika 2005]. All these methods have their advantages and drawbacks, yet
no particular method has emerged as the best. The choice of surrogate method de-
pends on many factors, such as problem size, expected complexity, analytical cost,
and form of infill strategy. Neural network and Kriging approximation are among
the most popular techniques in simulation optimization meta-modeling [Jin 2001].
However, in the work of [Ren 2009], it is revealed that Kriging approximation is
in general likely to be preferred thanks to its meta-modeling capability. Various
Kriging models, specifically ordinary, universal, co-Kriging and blind Kriging, are
available. Ordinary Kriging is recommended for data that do not provide a priori
knowledge of the trends. An additional feature of Kriging approximations is their
impressive predictive power.

Engineering problems very often deal with multi-objective optimization
(MOO) [Marler 2004], which simultaneously optimizes a group of objective func-
tions. The predominant concept in defining an optimal point for an MOO problem
is Pareto optimal, offering a state within a multi-criteria optimization. In this
particular state, it is impossible to make any individual better off without causing
at least one individual to become worse off. The Pareto front refers to the set
of allocations that are all Pareto efficient for a given system; the Pareto front
is especially useful in engineering applications: by yielding all potential optimal
solutions, a designer can thus focus on tradeoffs within the constrained parameter
set rather than considering the full range of parameters. In this study, Kriging
surrogate models of the modal parameters that rely on rubber layer characteristics
will be defined as objective functions; the rubber layer characteristics are defined
as input variables. A fast, elitist multi-objective genetic algorithm is employed to
solve the MOO problem that allows achieving Pareto optimal [Deb 2002].
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1.1 Finite element formulation of the assembled systems

The assembled system under consideration is given in Figure 1.1.

Figure 1.1: Illustration of assembled system with rubber layer interface

The dynamic model can be used to determine the effect of structural changes
of mass, damping and stiffness. There are basically three different types of models
commonly used for solving structural dynamic problems [Avitabile 2000]: physical
model, which is developed from basis physical characteristics describing the system
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mass, damping and stiffness from a finite element model description; modal space
models, which is developed from the modal characteristics describing the frequency,
damping and mode shape; response based model, which is developed from charac-
teristics of the system response by measurements.

Finite element (FE) modeling consists in the discretization of the structure into
elements that are defined by nodes that describe the elements. Element characteris-
tics are determined from the theory of elasticity and strength of materials. A simple
solution to governing equations for each element is formulated and general solution
for all elements results in algebraic set of simultaneous equations [W.Kwon 1997].
Classical finite element codes provide mass and stiffness matrices. We propose to
explain the principle of the double modal synthesis method using matrices. The
governing motion equation of the model is given by:

MÜ + KU = F (1.1)

where M is the mass matrix, K the stiffness matrix, U the unknown array, Ü the
second time derivative of the U. F is the force vector applied on the system.

To represent the free-vibration and eigensolutions of the structure, harmonic
motion is assumed so that ü is taken to equal λu, where λ is the eigenvalue and u

is the amplitude of the following characteristic equation:

(−λM + K)u = 0 (1.2)

The damping matrix is assumed to be proportional to the mass and/or stiff-
ness matrix since it is often difficult to identify the actual damping. Two types
of proportional damping operators are considered in our work: Rayleigh damping
and hysteretic damping [Millard 2006]. Rayleigh damping is the viscous damping,
which is a combination of mass and stiffness matrix and depends on the excitation
frequency.

C = αcM + βcK (1.3)

where αc, βc are the Rayleigh damping ratios related to the mass and stiffness matrix,
respectively. Hysteretic damping represents dissipation by giving a loss factor at the
element level. It is related to dynamic stiffness matrix and does not depend on the
frequency:

C = hK (1.4)

where h is the hysteretic damping ratio.

For the sake of simplicity and coherence, the matrix in the governing equation is
reoriented in order of excitation set (E), junction set (J), substructure 1 (S1) and
substructure 2 (S2), respectively. The mass matrix and stiffness matrix reads:

M =


ME 0 MES1

0

0 MJ MJS1
MJS2

MS1E MS1J MS1
0

MS2E MS2J 0 MS2

 K =


KE 0 KES1

0

0 KJ KJS1
KJS2

KS1E KS1J KS1
0

0 KS2J 0 KS2

 (1.5)
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1.2 Theory of double modal synthesis

The dimension of built-up systems is generally very large and the computational
cost is expensive in analyzing this kind of system. The modal analysis based on
the Ritz-Galerkin projection using appropriate Ritz vectors, allow us to construct
reduced models expressed in terms of physical displacement vector field u in the
structure. This is accomplished by approximating u by a linear combination of
normal modes φk and generalized modal coordinates qk.

U =

Nr∑
k=1

φkqk (1.6)

The matrix form of this representation is given as follows: the physical coordinates
U are thus replaced by the generalized modal coordinates q.

U =
[
φ1 φ2 ... φNr

] 
q1

q2

...

qNr

 (1.7)

In accordance with the rearrangement of DOFs in the system, the physical space
can thus be projected on modal space by the use of a modal basis by using a modal
transformation matrix T of dimension (N ∗ Nr), where N is the total number of
DOFs in the FE model, and Nr is the number of retained mode number.:

UE

UJ

US1

US2

 = T


qE
qJ
qS1

qS2

 =


IE 0 0 0

0 ΦB 0 0

ΨS1E ΨS1JΦB ΦS1 0

0 ΨS2JΦB 0 ΦS2




qE
qJ
qS1

qS2

 (1.8)

The transformation matrix or the reduction basis is constructed based on a
hybrid modal synthesis method by the use of fixed interface modes, constraint
modes and branch modes. The reduction technique developed in this chapter is
an extension of the work found in [Jézéquel 1994a]. While herein we propose to
treat the excitation set and interface set of the structured part differently with two
distinct reduction techniques: All modes have been retained for the excitation set;
it is not necessary to reduce its size, since the number of DOFs of the excitation set
is generally limited. While the interface set is treated using double modal synthesis,
a certain number of boundary modes are retained; these modes are also known as
branch modes [Jézéquel 1994a]; it is required to reduce the interface mode number
when a large number of DOFs are involved. The notion herein is to retain the
dominant modes in the targeted frequency band rather than all boundary modes.
This approach makes it possible to correctly study the structure’s performance
with fewer modes, which may significantly lower the computational cost. In order
to obtain the reduction basis: fixed interface modes for both substructures are
first reduced; a second reduction is then applied on the interface set; no reduction
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is performed for excitation set. That is why this method is called double modal
synthesis.

According to fixed interface modal synthesis theory, which is also known as the
Craig & Bampton reduction method [Craig 1966], the displacements of the substruc-
ture uise induced by displacements of the excitation set ue are expressed in Equation
(1.9) by employing static constraint modes ΨCBise , i.e. all the NE excitation modes
are retained among the total number of NE:

uise = ΨCBiseue

= −Kisis
−1Kiseue s = 1, 2

(1.9)

Branch modes represent the performance of the global system. They are in-
troduced herein for the boundary condensation on the interface, which normally
includes a large number of DOFs in the model. The branch modes matrix ΦB is
formed by ΦBj , which is the eigenvector of Equation (1.10). The eigenvalue matrix
ΛB is a diagonal matrix in which the diagonal elements are λBj . Supposing that
NJr branch modes are retained among the total number of NJ, the dimension of ΦB

is thus NJ ∗ NJr. This equation is obtained by projecting the physical DOFs onto
the constraint modes [Brizard 2012]:

[−ΛB MB + KB] ΦB = 0 (1.10)

where MB = tΨSMΨS and KB = tΨSKΨS are the mass and stiffness matrices
of the coupled system condensed on boundaries between substructures. The
constraints modes matrix ΨS is expressed as follows:

ΨS =

 ΨJ

ΨS1J

ΨS2J

 =

 Ij
−Ki1i1

−1Ki1j

−Ki2i2
−1Ki2j

 (1.11)

The internal displacements of a substructure uisj induced by the interface set dis-
placements uj are obtained by projecting branch modes onto the substructure
[Brizard 2012]:

uisj =
(
−Kisis

−1Kisj

)
ΦBqj s = 1, 2 (1.12)

For the construction of reduced models, the static behavior plays an important
role. The limit zero-frequency static behavior is taken into account in our boundary
value problem. Moreover, the displacements of each substructure imposed by suc-
cessive unit displacements on the interface, denoted Ψisj , are expressed in Equation
(1.13). This expression can be developed as a MacLaurin series, which integrates
the influence of the pulsation term ω2. By controlling the ω2 development order, it
is possible to obtain a more accurate reduced model and lower the truncation error
caused by mode condensation on the interface. The purpose of this work however is
to improve dynamic behavior by optimizing the interface configuration. A compro-
mise can then be made between the reduced model accuracy and the optimization
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computation time. The zero-order development has been shown to suffice for the
study of dynamic behavior in the low-frequency band [Brizard 2012].

Ψisj = −(Disis)
−1DisjΨj

=
(
−ω2Misis + Kisis

)−1(−ω2Misj + Kisj

)
Ψj

(1.13)

The fixed interface modes matrix of a substructure, denoted ΦSs , is formed
by φSs , the eigenvector to Equation (1.14), and λSs is the associated eigenvalue.
Supposing that Nisr internal modes are retained among the total number of Nis , the
dimension of ΦSs is thus Nis ∗Nisr.

(−λSsMisis + Kisis)φSs = 0 s = 1, 2 (1.14)

The dimension of the reduction basis is N ∗Nr, with N > Nr, which makes the
dimension of the generalized modal array q smaller than that of the physical array
U. ΦB is of dimension NJ ∗ NJr, with NJ > NJr, which renders the dimension of
qJ smaller than that of UJ . ΦSi is of dimension Nis ∗Nisr, with Nis > Nisr, which
makes the dimension of qSs smaller than that of USs . Note that ΦB, ΦS1 and ΦS1

are not square matrix, their inverse Φ−1
B , Φ−1

S1
and Φ−1

S1
are in fact Moore-Penrose

pseudo-inverse.
The Moore-Penrose pseudo-inverse of the matrix A is the matrix B satisfying

four conditions:
A ∗B ∗A = A

B ∗A ∗B = B

A ∗B is Hermitian

B ∗A is Hermitian

(1.15)

The pseudo-inverse is a generalization of the inverse matrix. The matrix B is of
the same dimension as the transpose of A and its computation is based on singular
value decomposition.

The reduction basis using branch modes is the key point for the fast estimation
of dynamic responses of the built-up system. The accuracy of the reduced model
depends on the retained modes number during the modal synthesis.

1.3 Modal parameters characterizing vibration trans-
mission

The interface configuration variation is accompanied by the stiffness, damping or
mass modification of the system. In this way, the natural frequencies of branch
modes are set apart from the natural frequency of other substructures and the
excitation frequency. The parameters linked to the interface configuration are thus
considered as design variables in optimal design. Vibration level can be calculated
directly with the proposed hybrid modal synthesis by the use of excitation modes
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and branch modes. Based on a proper selection of bounds of the design parameters,
sufficient large number of simulations to calculate forced responses is performed for
design parameters varying in the chosen bounds. Due to the large size of industrial
problems, repeated evaluations of system performance for many design points are not
practically affordable. Surrogate mathematical models are constructed based on the
previous simulations to predict the system performance of different configurations.
A global optimization based on the surrogate model is then conducted to find the
optimal interface configuration.

Moreover, we would like to extract modal parameters to analyze the dynamic
performance of the system. These modal parameters linked to noise transmission
paths between substructures are deduced from dynamic flexibility and transmissi-
bility terms. By analyzing these criteria, one can identify the responsible modes
and responsible noise transmissions paths for the high noise level that occurs in the
cavity.

From the modal overview, the viscoelastic layer configuration is optimized in
order to regulate its fundamental frequency. This brings branch mode frequencies
shunning the resonant frequencies of other parts of the structures. To explain from
this aspect, modal parameters characterizing vibration transmission paths and
depending on the interface configuration are deduced from the above modal anal-
ysis. The vibration transmission in the assembled system is illustrated by Figure 1.2.

Figure 1.2: Vibration transmission in the assembled structures

The criteria corresponding to various physical meanings can be derived from
the explicit motion equation. The five criteria devoted to illustrating vibration
transmission paths from the excitation to substructures, as shown in Figure 1.3,
have been investigated. Three modal parameters were found to be influenced by
the junction. Consequently, they vary with the junction configuration, while the
other two modal parameters do not. Another strength of these modal criteria is the
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realization of a modal overview in order to analyze the influence of a certain mode
on vibration transmission.

Figure 1.3: Physical illustration of evaluation criteria

From modal coordinates to physical displacements, the relationship is given by:

qE = UE

qJ = Φ−1
B UJ

qS1 = Φ−1
S1

(US1 −ΨS1EUE −ΨS1JUJ)

qS2 = Φ−1
S2

(US2 −ΨS2JUJ)

(1.16)

The damping matrix is also supposed to be diagonal according to Basile’s hy-
pothesis. The reduced governing equation can be written in the following form:

−ω2


M̄E M̄EJ M̄ES1 M̄ES2

M̄JE M̄J M̄JS1 M̄JS2

M̄S1E M̄S1J M̄S1 0

M̄S2E M̄S2J 0 M̄S2

+ iω


C̄E 0 0 0

0 C̄J 0 0

0 0 C̄S1 0

0 0 0 C̄S2



+


K̄E 0 0 0

0 K̄J 0 0

0 0 K̄S1 0

0 0 0 K̄S2





qE
qJ
qS1

qS2

 =


FE

0

0

0


(1.17)

The explicit expressions of terms in the reduced motion equation are givens as
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follows:

K̄E = IE (MEIE + MES1
ΨS1E) + Ψt

S1E (MS1EIE + MS1
ΨS1E)

M̄EJ = IEMES1ΨS1JΦB + Ψt
S1E (MS1JΦB + MS1ΨS1JΦB)

M̄ES1 = IEMS1EΦS1 + Ψt
ES1

MS1ΦS1

M̄JE = Φt
BMJS1

ΨS1E + (ΨS1JΦB)
t
(MS1EIE + MS1

ΨS1E) + (ΨS2JΦB)
t
MS2EIE

M̄J = Φt
BMBΦB

M̄JS1
= Φt

BMJS1
ΦS1

+ (ΨS1JΦB)
t
MS1

ΦS1

M̄JS2 = Φt
BMJS2ΦS2 + (ΨS2JΦB)

t
MS2ΦS2

M̄S1E = Φt
S1

(MS1EIE + MS1ΨS1E)

M̄S1J = Φt
S1

(MS1JΦB + MS1
ΨS1JΦB)

M̄S1
= Φt

S1
MS1

ΦS1

M̄S2E = Φt
S2

MS2EIE

M̄S2J = Φt
S2

(MS2JΦB + MS2ΨS2JΦB)

M̄S2
= Φt

S2
MS2

ΦS2

(1.18)
The objective is to minimize the effect of external load FE on the vibration level of
the system. The dynamic amplification of external load is revealed by the coefficient
Hk
E which links FE and UE . In developing the first row of the generalized motion

equation – Equation (1.17):

− ω2
(
m̄k
EqE + M̄k

EJqJ + M̄k
ES1

qkS1

)
+ iωc̄kEqkE + k̄kEqkE = FE (1.19)

UE =

NE∑
k=1

qkE

=

NE∑
k=1

FE + ω2
(
M̄k

EJqJ + M̄k
ES1

qS1

)
−ω2m̄k

E + iωc̄kE + k̄kE

=

NE∑
k=1

1

1 + 2iηkE

(
ω
ωkE

)
−
(
ω
ωkE

)2

[
FE +

(
ω

ωkE

)2

(
M̄k

ES1

m̄k
E

US1 +
M̄k

EJ

m̄k
E

Φ−1
B UJ)

]

=

NE∑
k=1

Hk
E

[
FE +

(
ω

ωkE

)2

(
M̄k

ES1

m̄k
E

US1 +
M̄k

EJ

m̄k
E

Φ−1
B UJ)

]
(1.20)

where

ωkE =

√
kkE
mk
E

, λkE =

(
ω

ωk
E

)2
1 + 2iηkE

(
ω

ωk
E

)
−
(
ω

ωk
E

)2 , ckE = 2ηkE

√
kkEm

k
E

Hk
E =

1

1 + 2iηkE

(
ω
ωkE

)
−
(
ω
ωkE

)2
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Take the example to minimize the influence of the external load on plate 2 by
optimizing interface configuration. The direct and indirect vibration transmission
paths starting from the excitation set and finally arriving at plate 2 are investi-
gated. In order to obtain the modal parameters characterizing the transmission
paths between substructures, the influence of others parts on one substructure is
analyzed in the following. The physical displacements of the substructures can be
deduced by using the generalized motion equation Equation (1.16) and the relation
between modal coordinates and physical coordinates Equation (1.17). It should be
noted herein that the influence of one substructure on another is the modal influ-
ence through component modes, which is in accordance with the aforementioned
objective to dislocate resonance modes.

1.3.1 Study of plate 2

The modal parameters devoted to characterizing the influence of the other parts on
plate 2 are illustrated in Figure 1.4.

Figure 1.4: Physical illustration of modal parameters attached to plate 2

The physical displacements of plate 2 is written by:

US2 =ΨS2JUJ + ΦS2qS2

=ΨS2JUJ +

NS2∑
k=1

Φk
S2

qkS2

(1.21)

The explicit expression of plate 2 displacements require information on qkS2
. qkS2

can be deduced by developing the fourth row of the generalized motion equation –
Equation (1.17):

− ω2
(
M̄k

S2EqE + M̄k
S2JqJ + m̄k

S2
qkS2

)
+ iωc̄kS2

qkS2
+ k̄kS2

qkS2
= 0 (1.22)
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qkS2
=
ω2
(
M̄k

S2E
qE + M̄k

S2J
qJ
)

−ω2m̄k
S2

+ iωc̄kS2
+ k̄kS2

= λki2

[
M̄k

S2E

m̄k
S2

UE +
M̄k

S2J

m̄k
S2

Φ−1
B UJ

] (1.23)

where

ωki2 =

√
kkS2

mk
S2

, λki2 (ω) =

(
ω

ωk
i2

)2

1 + 2iηkS2

(
ω

ωk
i2

)
−
(

ω

ωk
i2

)2 , ckS2
= 2ηkS2

√
kkS2

mk
S2

In replacing Equations (1.23) in Equation (1.21), we have the physical coordinates
of nodes on plate 2 written by:

US2 =ΨS2JΦBUJ + ΦS2qS2

=ΨS2JUJ +

NS2∑
k=1

Φk
S2

qkS2

=ΨS2JUJ +

NS2∑
k=1

Φk
S2
λkS2

M̄k
S2E

m̄k
S2

UE +

NS2∑
k=1

Φk
S2
λkS2

M̄k
S2J

m̄k
S2

Φ−1
B UJ

=

NS2∑
k=1

λki2Ḡ
k
i2eUE + (ΨS2j +

NS2∑
k=1

λki2Ḡ
k
i2j)UJ

(1.24)

Gk
i2e

is the plate 2 generalized coordiantes induced by excitation for mode-k (a total
number of NS2 fixed interface modes of plate 2):

Gk
i2e = Φk

S2

M̄k
S2E

m̄k
S2

(1.25)

Gk
i2j

is the plate 2 generalized coordinates induced by interface displacement (a total
number of NS2 fixed interface modes of plate 2):

Gk
i2j = Φk

S2

M̄k
S2J

m̄k
S2

Φ−1
B (1.26)

1.3.2 Study of the junction

When analyzing Equation (1.24), it can be seen that US2 depend on UJ . In order to
analyze the physical displacement of UJ , the influence of other parts on the junction
is analyzed. The modal parameters devoted to characterizing the influence of the
other parts on the junction are illustrated in Figure 1.5.
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Figure 1.5: Physical illustration of modal parameters attached to the junction

According to the relationship between physical displacements and modal coor-
dinates Equation (1.8), UJ is written by:

UJ =

NJ∑
k=1

Φk
BqkJ (1.27)

The modal parameters linked to the junction is also derived from the explicit motion
equation, and qkJ can be obtained by developing the second row of the generalized
motion equation– Equation (1.17):

− ω2
(
M̄k

JEqE + m̄k
JqkJ + M̄k

JS1
qS1 + M̄k

JS2
qS2

)
+ iωc̄kJqkJ + k̄kJqkJ = 0 (1.28)

qkJ =
ω2
(
M̄k

JEqE + M̄k
JS1

qS1 + M̄k
JS2

qS2

)
−ω2m̄k

J + iωc̄kJ + k̄kJ

= λkB

[
M̄k

JE

m̄k
J

UE +
M̄k

JS1

m̄k
J

Φ−1
S1

(US1 −ΨS1EUE −ΨS1JUJ)

+
M̄k

JS2

m̄k
J

Φ−1
S2

(US2 −ΨS2JUJ)

] (1.29)

where

ωkB =

√
kkJ
mk
J

, λkB =

(
ω

ωk
B

)2
1 + 2iηkJ

(
ω

ωk
B

)
−
(
ω

ωk
B

)2 , ckJ = 2ηkJ

√
kkJm

k
J

In replacing Equation (1.29) in Equation (1.27), we get the physical displacement
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vector of the boundary:

UJ =

NJ∑
k=1

Φk
BqkJ

=

NJ∑
k=1

Φk
Bλ

k
B

[
M̄k

JE

m̄k
J

−
M̄k

JS1

m̄k
J

Φ−1
S1

ΨS1E

]
UE

+

NJ∑
k=1

Φk
Bλ

k
B

[
M̄k

JS1

m̄k
J

Φ−1
S1

US1

]
+

NJ∑
k=1

Φk
Bλ

k
B

[
M̄k

JS2

m̄k
J

Φ−1
S2

US2

]

+

NJ∑
k=1

Φk
Bλ

k
B

[
−

M̄k
JS1

m̄k
J

Φ−1
S1

ΨS1J −
M̄k

JS2

m̄k
J

Φ−1
S2

ΨS2J

]
UJ

=

NJ∑
k=1

λkBGk
ji1US1 +

NJ∑
k=1

λkBGk
ji2US2 +

NJ∑
k=1

λkBGk
jeUE −

NJ∑
k=1

λkBGk
jjUJ

(1.30)

The decoupled equation of UJ turns to be:

(1 +

NJ∑
k=1

λkBGk
jj)UJ =

NJ∑
k=1

λkBGk
ji1US1 +

NJ∑
k=1

λkBGk
ji2US2 +

NJ∑
k=1

λkBGk
jeUE (1.31)

Gk
je gives the generalized boundary coordinates induced by excitation through mode-

k (a total number of NJ):

Gk
je = Φk

B

[
M̄k

JE

m̄k
J

−
M̄k

JS1

m̄k
J

Φ−1
S1

ΨS1E

]
(1.32)

Gk
ji1

indicates the generalized boundary coordinates induced by plate 1 displace-
ments through mode-k (a total number of NJ):

Gk
ji1 = Φk

B

M̄k
JS1

m̄k
J

Φ−1
S1

(1.33)

Gk
ji2

represents the generalized boundary coordinates induced by plate 2 through
mode-k (a total number of NJ):

Gk
ji2 = Φk

B

M̄k
JS2

m̄k
J

Φ−1
S2

(1.34)

Gk
jj shows the influence induced by interface itself through mode-k (a total number

of NJ):

Gk
jj = Φk

B

[
M̄k

JS1

m̄k
J

Φ−1
S1

ΨS1J +
M̄k

JS2

m̄k
J

Φ−1
S2

ΨS2J

]
(1.35)
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1.3.3 Study of the plate 1

It can be seen from Equation (1.30) that UJ depend on US1 . In order to analyze
the physical displacement of US1 , the influence of other parts on plate 1 is analyzed.
The modal parameters devoted to characterizing the influence of the other parts on
plate 1 are illustrated in Figure 1.6.

Figure 1.6: Physical illustration of modal parameters attached to plate 1

According to the relationship between physical displacements and modal coor-
dinates Equation (1.8), US1 is written by:

US1 = ΨS1EUE + ΨS1JUJ + ΦS1qS1 (1.36)

By developing the third row of the generalized motion equation Equation (1.17),
the modal parameters linked to plate 1 can be derived from the explicit motion
equation:

− ω2
(
M̄k

S1EqE + M̄k
S1JqJ + m̄k

S1
qkS1

)
+ iωc̄kS1

qkS1
+ k̄kS1

qkS1
= 0 (1.37)

The generalized coordinates of plate 1 fixed interface mode-k is:

qkS1
=
ω2
(
M̄k

S1E
qE + M̄k

S1J
qJ
)

−ω2m̄k
S1

+ iωc̄kS1
+ k̄kS1

= λki1

[
M̄k

S1E

m̄k
S1

UE +
M̄k

S1J

m̄k
S1

Φ−1
B UJ

] (1.38)

where

ωki1 =

√
kkS1

mk
S1

, λki1 =

(
ω

ωk
i1

)2

1 + 2iηki1

(
ω

ωk
i1

)
−
(

ω

ωk
i1

)2 , cki1 = 2ηki1

√
kki1m

k
S1

In replacing Equation (1.38) in Equation (1.36), the displacement vector of plate 1
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is expressed by:

US1 =ΨS1EqE + ΨS1JUJ + ΦS1qS1

=ΨS1EUE + ΨS1JUJ +

NS1∑
k=1

Φk
S1

qkS1

=(ΨS1E +

NS1∑
k=1

Φk
S1
λki1

M̄k
S1E

m̄k
S1

)UE + (ΨS1J +

NS1∑
k=1

Φk
S1
λki1

M̄k
S1J

m̄k
S1

Φ−1
B )UJ

(1.39)

Gk
i1e

indicates the plate 1 displacements induced by excitation:

Gk
i1e =

NS1∑
k=1

Φk
S1

M̄k
S1E

m̄k
S1

(1.40)

Gk
i1j

represents the influence of boundary displacement on plate 1 through mode-k
(a total number of NS1 fixed interface modes of plate 2).

Gk
i1j = Φk

S1

M̄k
S1J

m̄k
S1

Φ−1
B (1.41)

1.3.4 Study of the vibration transmission paths

Since the objective is to minimize the influence of external load affected on the
vibration level of Plate 2, three transmission paths from the external set to plate 2
are considered and analyzed in the following.

The first is the direct path from the excitation to plate 2 denoted by US2E , as
shown in Figure 1.7:

US2E =

NS2∑
k=1

λki2Ḡ
k
i2eUE

=

NS2∑
k=1

λki2Ḡ
k
i2e

NE∑
k=1

Hk
EFE

(1.42)

Figure 1.7: Vibration transmission path: E-Plate 2
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The second is the path starting from the excitation, going through the interface,
and finally arriving at plate 2, denoted by US2JE and shown in Figure 1.8:

US2JE = (ΨS2J +

NS2∑
k=1

λki2Ḡ
k
i2j)

NJ∑
k=1

λkBGk
je

NE∑
k=1

Hk
EFE (1.43)

Figure 1.8: Vibration transmission path: E-Junction-Plate 2

In this vibration transmission path, modal parameters related to the interface
configurations are identified: Gk

je characterizing the influence of excitation on the
interface by branch modes; Gk

i2j
indicating the influence of the interface on plate 2

by plate 2 fixed interface modes.

The third vibration transmission path starts from the excitation node, passes
by plate 1, via the interface and finally arrives at plate 2, denoted by US2JS1E and
shown in Figure 1.9. The influence of UE on US2 can be described by the following

Figure 1.9: Vibration transmission path E-Plate 1-Junction-Plate 2
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equation:

US2JS1E = (ΨS2J +

NS2∑
k=1

λki2G
k
i2j)

NJ∑
k=1

λkBGk
ji1

NS1∑
k=1

λki1G
k
i1e

NE∑
k=1

Hk
EFE (1.44)

In this vibration transmission path, two modal parameters related to the
interface configurations are identified: λkBGk

ji1
characterizing the influence of plate

1 on the interface by branch modes; λki2G
k
i2j

indicating the influence of the interface
on plate 2 by plate 2 fixed interface modes.

It should be mentioned that the choice of modal parameters as objective func-
tions in the optimization process is large. Herein four modal parameters depending
on the interface configuration are considered to be dominant for indicating the in-
fluence of external load on plate 2 vibration: λkBGk

je, λ
k
BGk

ji1
, λkBGk

ji2
and λki2G

k
i2j

.
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2.1 Mechanical model with fluid-structure interaction

The proposed method seeks to demonstrate the influence of interface characteristics
on a global system, especially on the pressure variations in the cavity of a vibro-
acoustic model.

A simple drawing of vehicle system is shown in Figure 2.1. A simple model,
which features a similar geometry to that of a vehicle passenger compartment, is
thus employed for simulation purposes. This model consists of a fluid cavity, two
substructures formed by Kirchhoff plates and a rubber layer acting as an interface
between substructure 1 and 2 (S1, S2). These two substructures differ in size so as to
avoid symmetric behavior. As boundary conditions, 4 nodes on S1 are rotationally
articulated in three translation directions, as shown in Figure 2.2.

The system considered in this work is structures containing a compressible, non-
weighing fluid, with or without a free surface, as shown in Figure 2.3.

Instead of describing the small motion of the fluid by a fluid displacement vector
field uF , which requires an appropriate discretization of the fluid irrotationality con-
straint curl uF = 0, we will use the pressure scalar field p. The classical formulation
describing the harmonic response of a coupled elasto-acoustic system subjected to



28 Chapter 2. Outlines of the numerical tools in triple modal synthesis

Figure 2.1: Vehicle Model

Figure 2.2: Academic model used for simulation
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Figure 2.3: Simple drawing of fluid-
structure coupling

Figure 2.4: Pairing procedure when
structural and fluid meshes do not
match at boundaries

an external force applied on the structure is written by:

σij,j(u) + ω2ρSui = 0 ΩS (a)

σij(u)nSj = F di ∂ΩS\Σ (b)

σij(u)nSj = pni Σ (c)

∂p

∂n
= ω2ρFu · n Σ (d)

∆p+
ω2

c2
p = 0 ΩF (e)

(2.1)

Among which, Equation (2.1).a is the elasto-dynamic motion equation, where
σij the Cauchy stress tensor; ρs is the mass density of the structure; ui is the
displacement of the structure; ω is the studied frequency; the domain occupied by
the fluid at rest (which is taken as the equilibrium state) is denoted ΩF ; Equation
(2.1).b is the boundary condition describing surficial density of the external force
F di applied on the structure, where nSj is the unit normal, external to the structure
domain; Σ is the fluid-structure interface. Equation (2.1).c describes the relation
between the constant static fluid pressure force acting on the structure, with n is
the unit normal external to the fluid domain. Equation (2.1).d corresponds to the
kinematic condition defined by the wall slipping condition, where u·n is a prescribed
arbitrary normal displacement of the fluid-structure interface. Equation (2.1).e is
the classical Helmholtz equation expressed in terms of p, where c denotes the (con-
stant) sound speed in the fluid; ρF is the (constant) mass density of the fluid at rest.

Then we’ll introduce the admissible space Cu of regular function u defined in
Ωs. In multiplying Equation (2.1).a by an arbitrary test function δu associated to
u, then applying Green’s formula, and considering Equation (2.1).b and Equation
(2.1).c, The weak variational formulation describing the response of the structure
to given harmonic forces of amplitude Fd on the external structure boundary, and
to fluid pressure field p acting on the internal fluid-structure interface is written as
follows:
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∫
ΩS

σij(u)εij(δu)dx− ω2

∫
ΩS

ρSu · δudx−
∫

Σ
pn · δudσ =

∫
∂ΩS\Σ

F d · δudσ (2.2)

Afterwards, let δp be the test function, associated to p, belonging to the ad-
missible space Cp. By the usual test-function method using Green’s formula, the
weak variational formulation corresponding to the modal analysis of the structural-
acoustic problem is then obtained by setting Fd = 0 in Equation (2.5). The eigen-
value structural-acoustic variational formulation is then stated as follows:

1

ρF

∫
ΩF

∇p · ∇δpdx− ω2

ρF c2

∫
ΩF

pδpdx− ω2

∫
Σ
u · nF δpdσ = 0 (2.3)

The matrixes corresponding to diverses bilinear forms in the variational formu-
lation are written by: ∫

ΩS

σij(u)εij(δu)dx⇒ δUTKU (a)∫
ΩS

ρSu · δudx⇒ δUTMU (b)

1

ρF

∫
ΩF

∇p · ∇δpdx⇒ δpTKap (c)

1

ρF c2

∫
ΩF

pδpdx⇒ δpTMap (d)∫
Σ
pδu · ndσ ⇒ δUTCp (e)∫

∂ΩS\Σ
F d · δudσ ⇒ δUTFd (f)

(2.4)

where the coupling matrix C is computed using fluid-structure coupling elements
in SDTools. The structure element used is quad4, and the fluid element is flui4.
The center of gravity on each element (the center of gravity) is used to evaluate C.
However, when structural and fluid meshes do not match at boundaries, pairing of
elements needs to be done. For each fluid element Fi, one takes the center of gravity
Gf,i, and searches the solid element Si which is in front of the center of gravity,
in the direction of the normal to the fluid element. The projection of Gf,i on the
solid element, Pi, belongs to Si, and one computes the reference coordinate r and
s of Pi in Si. The weights are associated to each node of Si. The coupling term
will associate the DOFs of Fi to the DOFs of Si with the corresponding weights.
(see Figure 2.4). The FE formulation of the coupled fluid-structure model with an
external harmonic force can thus be expressed as Equation (2.3) after discretization:(

−ω2

[
Ms 0
tC Ma

]
+

[
Ks −C

0 Ka

])[
u

pa

]
=

[
F

0

]
(2.5)

where ω is the excitation frequency of the external harmonic loading F applied
to the model; M is the mass matrix, K the stiffness matrix and C the coupling
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term between the compressible, non-weighing fluid and its surrounding structures.
Subscript s denotes the model’s solid part node while subscript a denotes the node
in the model cavity; us is the physical displacement of the solid part, and pa the
physical pressure variation in the fluid. In this model, us has been rearranged in
the ordering of: the excitation set (ue), the interface set (uj), internal DOFs of S1
(ui1), and internal DOFs of S2 (ui2). This same approach can be run for M, K,
and F:

[
u

pa

]
=



ue
uj1
uj2
ui1
ui2
pa

 , M =



Mee 0 0 Mei1 0 0

0 Mj1j1 0 Mj1i1 0 0

0 0 Mj2j2 0 Mj2i2 0

Mi1e Mi1j1 0 Mi1i1 0 0

0 0 Mi2j2 0 Mi2i2 0

Mae Maj1 Maj2 Mai1 Mai2 Maa



F =



Fe
0

0

0

0

0

 , K =



Kee 0 0 Kei1 0 Kea

0 Kj1j1 Kj1j2 Kj1i1 0 Kj1a

0 Kj2j1 Kj2j2 0 Kj2i2 Kj2a

Ki1e Ki1j1 0 Ki1i1 0 Ki1a

0 0 Ki2j2 0 Ki2i2 Ki2a

0 0 0 0 0 Kaa



• the subscript e represents the excitation node of the model

• the subscript is (s = 1, 2) represents the internal node of substructure-s of the
solid part

• the subscript js (s = 1, 2) represents the node on the interface attached to
substructure-s of the solid part

• the subscript a represents the node in the cavity

The zero terms in the matrix indicate that the corresponding parts are not
connected to the same element. Since the rubber layer is assumed to contribute
no mass but just stiffness, then the term in row 3 and column 2 is zero in the
mass matrix and nonzero in the stiffness matrix. The nodes of j1 and j2 have been
combined as j in the following analysis for the sake of simplicity.

2.2 Theory of triple modal synthesis

The modal analysis based on the Ritz-Galerkin projection using appropriate Ritz
vectors, allow us to construct reduced models expressed in terms of physical dis-
placement vector field u in the structure, and pressure variation vector p describing
the behavior of the fluid.

The reduction technique developed in this section is an extension of the work
found in [Besset 2011]. One improvement is that the excitation set and interface
set of the structured part are handled differently with two distinct techniques. A
double modal synthesis described in chapter 1.2 is first applied on the structural
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part, then a third reduction on the cavity modes is applied over the entire fluid
domain. Acoustic modes in rigid motionless cavity are introduced as Ritz projection
vector basis and plays a fundamental role in the Ritz-Galerkin procedure, including
the static solution of the coupled system.

According to [Besset 2011], the cavity modes correspond to the free modes of
the fluid. In our cases, nodes in the cavity represent the majority of DOFs. The
cavity modes are denoted φaa, which are the solution to the following eigenvalue
problem:

(
−ω2Maa + Kaa

)
φaa = 0 (2.6)

The reduced basis of the entire model is expressed in Equation (2.7) by combining
the static constraint modes, branch modes, fixed interface modes and cavity modes:

T =


Ie 0 0 0 0

0 ΦBj 0 0 0

ΨCBi1e
ΨBi1j

Φi1i1 0 0

ΨCBi2e
ΨBi2j

0 Φi2i2 0

0 0 0 0 Φaa

 (2.7)

In projecting the modal space onto the physical space with the transformation
matrix T, the physical coordinates are thus expressed by the modal coordinates q

as follows: 
ue = qe

uj = ΦBjqj

uis = Φisisqis + ΨCBiseqe + ΨBisjqj

pa = Φaaqa

(2.8)

When considering Rayleigh damping in the model, the governing equation of the
reduced model becomes:

(
−ω2M̄ + iωD̄ + K̄

)
q = F̄ (2.9)

where {
M̄ = tTMT, K̄ = tTKT,

D̄ = tTDT, F̄ = tTF

The stiffness matrix in the reduced motion equation is diagonal, due to the
orthogonal properties of the modes used in the modal analysis. Moreover, according
to the classical decoupling hypothesis of the damping matrix, also known as Basile’s
hypothesis [Imbert 1979], the Rayleigh damping matrix is assumed to be diagonal
in the new basis. The explicit form of the governing motion equation can thus be
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expressed as:

(
− ω2


me M̄ej M̄ei1 M̄ei2 M̄ea

M̄je mj M̄ji1 M̄ji2 M̄ja

M̄i1e M̄i1j mi1 0 M̄i1a

M̄i2e M̄i2j 0 mi2 M̄i2a

M̄ae M̄aj M̄ai1 M̄ai2 ma

+ iω


de 0 0 0 0

0 dj 0 0 0

0 0 di1 0 0

0 0 0 di2 0

0 0 0 0 da



+


ke K̄ej K̄ei1 K̄ei2 0

K̄je kj K̄ji1 K̄ji2 0

K̄i1e K̄i1j ki1 0 0

K̄i2e K̄i2j 0 ki2 0

0 0 0 0 ka


)

ue

qj

qi1

qi2

qa

 =


F̄e

0

0

0

0


(2.10)

This explicit formulation allows preceding the CMS, which may be very useful
when treating assembled structures with local modifications and which serves as
the basis to introduce the subsequent evaluation criteria presented in Section 2.4.

2.3 Criteria characterizing acoustic comfort

Various standards exist for the measurement of the sound pressure level, for exam-
ple A-, B-, C-, D- and Z-weightings according to IEC 61672 standards [Aarts 1992].
Among these standards, C-frequency-weighting and its fitting is mandated to pre-
cision sound level meters for testing; D-frequency-weighting was initially designed
for the measurement of high level aircraft noise and is now only used for non-bypass
engines to military aircrafts; Z-frequency-weighting was introduced to replace the
Linear frequency weighting often fitted by manufacturers, while this change was
needed as each sound level meter manufacturer could choose their own frequency
cut-offs. The most commonly used curve related to the measurement of sound
pressure level is A-weighting, which is now mandated for light civilian aircraft mea-
surements, environmental noise measurement and potential hearing damage mea-
surement [Berger 2003].

The A-weighting function that acts on the amplitude spectrum is defined by
[Berger 2003]:

RA(f) =
122002 · f4

(f2 + 20.62)
√

(f2 + 107.72) (f2 + 737.92) (f2 + 122002)
(2.11)

In order to ensure the normalization to 0 dB at 1000 Hz, an offset value of 2 is
added to the un-weighted sound level in dB units:

A(f) = 2.0 + 20 lg (RA(f)) (2.12)

The pressure variations in the cavity (P (f)) is at first converted to Lp(f) with
the following equation [Berger 2003]:
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Lp(f) = 10 · lg
(

P

Pref

)2

Pref = 2× 10−5 Pa (2.13)

A new criteria reflecting human perception is thus defined:

La(f) = Lp(f) +A(f) (2.14)

2.4 Modal parameters characterizing noise transmission

By analogy with criteria presented in chapter 1.3, rather than calculating pressure
variations in the cavity, this section will define the evaluation criteria corresponding
to vibration transmission paths in the model. The vibration transmission paths start
from an external loading set, extend through components in the model, and finally
induce pressure variation in the cavity. Several representative noise transmission
paths from the excitation point to the cavity are illustrated in Figure 2.5.

Figure 2.5: Noise transmission in the model

Let’s note that the criteria corresponding to various physical meanings may be
easily derived from the explicit motion equation. The seven criteria devoted to
illustrating noise transmission paths between substructures, as shown in Figure 2.6,
have been investigated. Three modal parameters were found to be influenced by
the junction. Consequently, they vary with the junction configuration, while the
other four modal parameters do not. Another strength of these modal criteria is
the realization of a modal overview in order to analyze the influence of a certain
mode on noise transmission. For similar models, similar criteria could be employed
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as well, but the expression would still differ.

Figure 2.6: Physical illustration of evaluation criteria

By developing the last row of Equation (2.10), the modal coordinate of pressure
variations in the cavity is written as:

qka =
ω2

−ω2mk
a + iωdka + kka

(
M̄k

aeqe + M̄k
ajqj + M̄k

ai1qi1 + M̄k
ai2qi2

)
(2.15)

where k indicates the kth row in corresponding matrix or vector, i.e., Mk
ae stands

for the kth row of Mae and qka stands for the kth component of qa.

In projecting modal coordinates onto physical coordinates, with the transforma-
tion matrix described in Equation (2.8) and by retaining Na acoustic modes, the
physical pressure variation is mainly governed by Equation (2.16):
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(2.16)

where
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In addition, let’s note that Φ−1
Bj

= tΦBj
tΨSMΨS , it can be substituted into the

above formulations in order to save computational time.

Four modal terms can thus be extracted from Equation (2.16), where λkaG̃k
ae

indicates the pressure variation excited by the excitation set; λkaG̃
k
ai1

reports
the pressure variation triggered by the displacement of S1; λkaG̃k

aj represents the
pressure variation stimulated by junction movement; and lastly λkaG̃

k
ai2

denotes
the pressure variation caused by S2. Let’s also note that the explicit expression
of λkaG̃k

aj pertains to branch modes, yet branch modes vary according to interface
configuration. λkaG̃k

aj can therefore be investigated in the optimization process.

By developing the second row of Equation (2.10) and then substituting physical
coordinates for the modal coordinates with Equation (2.8) and retaining NB branch
modes, the physical displacements of the interface are obtained:
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The decoupled expression of uj turns to be:
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where
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The modal parameter extracted from Equation (2.18) is: λkj G̃
k
ji1

. It denotes the
displacement of the interface stimulated by the displacement of S1 and moreover
corresponds to the transmission path from the S1 to the interface. In addition,
G̃k
ji1

varies with interface configuration, which can then be investigated in the
optimization process.

By developing the third row of Equation (2.10) and then substituting physical
coordinates for modal coordinates using Equation (2.8) while retaining Ni1 fixed
interface modes of S1, the physical displacement of S1 is found to be governed by
Equation (2.19):
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G̃k
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Resonance occurs whenever ω = ωki1 , i.e. λ
k
i1
attain their peaks under this condition.

Other terms may be neglected since the resonance is generally the main reason
behind large pressure variations. The modal parameter characterizing vibration
transmission from excitation set to S1 is denoted: λki1G̃

k
i1e

.

By developing the fourth row of Equation (2.10) and then substituting physical
coordinates for modal coordinates while retaining Ni2 fixed interface modes for S2

and then grouping terms dependent on uj , the physical displacement of S2 can be
expressed as:
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The modal term extracted from Equation (2.20) is λki2G̃
k
i2j

, which reveals
the displacement of S2 stimulated by the interface displacement. This term also
represents the transmission path from the interface to S2. Likewise, G̃k

i2j
varies with

interface configuration, and this warrants investigation for structural optimization.

Considering the example of the entire noise transmission path starting from the
excitation point, passing through S1, the interface, S2 and finally arriving at the
cavity, the pressure variations caused by this path can be written as:

pas2js1e =
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According to the mathematical expression, if λkj and λka, λki1 or λki2 reach their
peaks at the same time, i.e. if the natural frequencies of branch modes equal to
that of constraint modes, fixed interface modes or acoustic modes, then the pressure
variations in the cavity become violent. In seeking to reduce noise level in the
cavity, the coincidence of natural frequencies of the branch modes and the constraint
modes, fixed interface modes or acoustic modes should be avoided. By regulating
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geometric parameters of the rubber layer in the system, this coincident effect can
consequently be mitigated by redistributing the natural frequency of branch modes
and by adjusting criteria based on the interface configuration. Similarly as the case
of assembled plate system, the choice of modal parameters as objective functions in
the optimization process is large. Herein three modal parameters depending on the
interface configuration are considered to be dominant for indicating the influence of
external load on the pressure variations in the cavity: λkaG̃aj , λkBG̃ji1 and λki2G̃i2j .
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3.1 Numerical schemes for system optimization

Case studies on an assembled plates and a coupled fluid-structure system are per-
formed in this chapter. The aim is to reduce the vibration level for the assembled
plates system; and to improve the acoustic comfort in the cavity of the coupled
fluid-structure system. To do this, the full FE models of the plates system and
the coupled fluid-structure system are reduced by using double modal synthesis
presented in Chapter 1 and triple modal synthesis in Chapter 2, respectively.

The optimization problem can be solved either by calculating directly the forced
responses or pressure variations with the proposed modal synthesis or by analyzing
the proposed modal parameters. For the second case by analyzing the proposed
modal parameters, modal criteria characterizing vibration transmission in the sys-
tem are extracted and defined as objective functions. Meta-models of these objective
functions are determined with Kriging interpolation method, and finally the Pareto
optimal is deduced by employing a multi-objective optimization algorithm. The
optimization strategy is presented in the following.

Kriging approximations
Even though the computation cost of modeling complex systems is reduced

with the proposed modal synthesis, the calculation cost of optimization problems
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nonetheless remains high. It is well known that objective functions need to be eval-
uated for many iterations during the optimization routine. Even with the most
efficient criteria, optimization process appears to be very time-consuming. Once the
corresponding Kriging interpolation models are constructed by using DACE toolbox
[Lophaven 2002], optimization is achieved by applying a fast, elitist multi-objective
genetic algorithm that has been programmed by Seshadri [Seshadri 2006].

The criteria deduced above cannot necessarily be derived with respect to the
interface geometry parameters, yet the gradient of parameter evaluations is typically
required during the Kriging approximations. To overcome this disadvantage, a new
criterion possessing the same extreme as λknG̃k

n is introduced:

Cn =
1

4
lg
∑
k

∣∣∣λkn(ω)G̃k
n

∣∣∣4 (3.1)

where k is the mode number; ω is the excitation frequency; λkn(ω)G̃k
n is the modal

terms extracted in Chapter 1.2 and Chapter 2.2; and n = aj, ji1, i2j, ae, ai1, i1e, ai2.
Kriging is an interpolation method for which the interpolated values are modeled

by a stochastic process governed by prior covariance, as opposed to a regression
function chosen to optimize smoothness of the fitted values [Krige 1951]. The basic
idea of Kriging is to predict the value of a function at a given point by computing
a weighted average of the known values of the function in the neighborhood of
the point. Under suitable assumptions on the priors, Kriging gives the best linear
unbiased prediction of the intermediate values, which is widely used in the domain
of computer experiments.

Kriging approximations are obtained by using the software package entitled
DACE (Design and Analysis of Computer Experiments), which has been coded by
Sondergaard [Lophaven 2002]. The DACE toolbox [Lophaven 2002] provides var-
ious regression and correlation models. The numerical steps are briefly presented
as follows. A collection of design sites and their responses were first involved in
running computer experiments. To ensure that all portions of the vector space are
being represented, algorithms with space filling properties should be adopted to set
the experimental design sites; the one used herein was the Latin hypercube sam-
pling algorithm. Next, a regression model and stochastic process correlations were
combined to establish the mathematical models. The utility of both the regression
model and correlation model is: the regression model has been chosen to optimize
the smoothness of fitted values, with the correlation model being governed by prior
covariance. All surrogate models were carefully verified before serving as objective
functions during the optimization. The mean squared error at the untried design
sites is selected as the criterion used to evaluate the quality of surrogate models. Its
test result is always very small whenever the size of input design sites is sufficiently
large. Further details about the Kriging approximation can be found in Annexes A.

For our study cases, 10,000 simulations were carried out as computer experi-
ments in order to construct the surrogate models. The range of design sites θ and
l are equally distributed within a rectangular grid by means of applying Latin
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hypercube sampling. The test conducted on surrogate model that is composed of
a ’poly0’ regression model and a Gaussian correlation model, worked quite well for
the problem discussed below.

Multi-objective optimization algorithm
The optimization problem consists in determining the optimum thickness and

length of the viscoelastic layer to reduce the vibratory phenomenon or vibro-acoustic
phenomena in the system. The inequality constraints may result from serviceability
requirements (upper and lower bounds for the thickness and length of the viscoelastic
layer) and from the condition that the thickness variation law ensures the validity
of the Kirchhoff plate theory. The optimization problem is formulated in Table 3.1:

Table 3.1: Formulation of the optimization problem

Design variables the thickness θ and the length l of the rubber layer

Objective functions
Cje, Cji1 , Cji2 , Ci2j for plates system

Caj , Cji1 and Ci2j for coupled system

Constraint functions θ ∈ (0.1 mm, 10 mm) and l ∈ (0.1 mm, 10 mm)

The optimization problem consists in assessing trade-offs between multiples
objectives and the problem turns out to be a multi-objective problem. In this
case, solution requires a multi-objective algorithm such as Elitist Non-Dominated
Sorting Genetic Algorithm version II (NSGA-II) [Deb 2002], in which a rank-
ing selection method emphasizes current non-dominated solutions and a niching
method maintains diversity in the population. A tremendous effort has in fact
been made by the authors in coding a GA. The NSGA-II toolbox programmed by
Seshadri [Seshadri 2006] has ultimately been adopted due to computational com-
plexity, a lack of elitism and the sensitivity to GA parameters.

NSGA-II proceeds according to the steps outlined below: first, the population is
initialized into each front based on non-domination, and each individual in each front
is assigned a “fitness value". Except for the “fitness value", another parameter called
“crowding distance" is also calculated for each individual. The “crowding distance" is
a measure of how close an individual is to his neighbors. Second, based on these two
parameters, parents are selected from the population by using binary tournament
selection. Third, offspring are generated with simulated binary crossover [Deb 1994]
and polynomial mutation [Deb 2002] operators. The next-generation individuals
are then selected from the offspring and the current population. The process there-
fore repeats for the subsequent Ngen − 1 generations, where Ngen is the number of
generations. Moreover, the best Npop individuals are selected, where Npop is the
population size. The NSGA-II toolbox demonstrated its efficiency and good per-
formance. When the generation number and population size are large enough, the
Pareto front remains stable. Further details about the fast, elitist multi-objective
genetic algorithm can be found in Annexes B. The NSGA-II procedure is illustrated
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in Figure 3.1.

Figure 3.1: Flow diagram of NSGA-II

A convergence study of the population number and generation number has also
been carried out for our study cases. As a compromise between computational
time and accuracy, 500 populations and 150 generations were chosen for this
optimization, which permits a stable Pareto front.

For illustration, the primary techniques used during the entire procedure have
been outlined in Figure 3.2. Special attention are paid to the ‘quality control’ in the
simulation process: to validate the quality of the reduced model when passing from
step 1 to step 2, we used two criteria, namely: the natural frequency, and the modal
assurance criterion (MAC) value. For the evaluation of the accuracy of surrogate
models when passing from step 3 to step 4, the mean squared error of the modal
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prediction parameters at untried points are evaluated. To justify a lower noise level
with optimal interface configurations obtained in step 5, pressure variations inside
the cavity derived from optimal design sites on the Pareto front are compared to
those derived from arbitrary design sites by using the full FE model in step 1 (see
Figure 3.2).

Figure 3.2: Process flow chart

3.2 Assembled plates

In this case study, we seek to reduce the vibration level of plate 2 of the assembled
structural system. It should be mentioned that the choice of modal parameters
as objective functions in the optimization process is large. Herein four modal pa-
rameters depending on the interface configuration are considered to be dominant
for indicating the influence of external load on plate 2 vibration: Cje, Cji1 , Cji2

and Ci2j . Moreover, the analysis of these modal parameters permits identifying the
responsible resonant modes. These parameters can then be employed for optimiza-
tion, which turns out to be a multi-optimization problem since multiple parameters
need to be minimized simultaneously.

A simple model, which features a similar geometry to that of an assembled vehicle
system, is thus employed for simulation purposes. The system under consideration
is two rectangular Kirchhoff plates connected by a viscoelastic layer, with four edge
nodes clamped over the three translation and the three rotation directions, and
Rayleigh damping in the structures. Compared to the Kirchhoff plates, the mass of
the viscoelastic layer is negligible and more elastic. Since the major contribution of
the viscoelastic layer for the built-up system is the correction of stiffness matrix in
the translation directions, it is modeled by three spring elements to represent the
stiffness in three translation directions. The assembled structure is illustrated in
Figure 3.3.

A detailed view of how the rubber layer is padded on the plates can be seen
in Figure 3.4. The rubber layer is modeled by springs along the interface between
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Figure 3.3: The assembled plates model with its physical dimensions

S1 and S2. The proposed rubber layer model is assumed to be viscoelastic, which
can be considered as fairly reasonable for describing the stress-strain relationship
of this rubber specimen. Since the rubber layer mass is negligible compared to the
plate mass and since the rubber layer stiffness is far less than the plate stiffness.
θ and l represent respectively the thickness and length of the rubber layer. These
parameters are related to the stiffness value of the rubber layer.

Figure 3.4: Detail geometry of plate and rubber layer
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For the sake of simplicity, scalar springs have been introduced to model the rub-
ber layer, which is considered as reasonable for describing the stress-strain relation-
ship of the rubber specimen. Since the rubber layer mass is negligible compared to
the plate mass and since the rubber layer stiffness is far less than the plate stiffness.
The rubber layer material is assumed to be orthotropic, in considering the Young’s
modulus value (E) along connection axis x and shear modulus (G = E/(2(1 + ν)))
along both the y and z axes. This rubber material can be deemed as elastic for
small deformations. To ensure the quasi-incompressibility of the rubber material
in volume term, a Poisson’s ratio value of 0.49 has been adopted. Young’s modu-
lus varies with carbon content in the rubber. The Young’s modulus value adopted
in this study case agrees with that of a real rubber material in order of magni-
tude [James 1943]. The three equivalent linear element stiffness (i.e. kx, ky, and kz)
are given in Equation (3.2): 

kx = E
δy

l
θ,

ky = G
δy

l
θ,

kz = G
δy

l
θ.

(3.2)

where θ is the thickness of the rubber layer, l is the length of the rubber
layer and δy is the mesh width. It should be noted that these stiffness terms
depend on θ

l , thus the effective variable to be optimized is in fact the ratio of θ and l.

The viscoelastic layer is located at x = 0.6875m. Structural hysteresis damping
is integrated in the system, with the hysteresis damping coefficient equals to 0.01

on the plates and 0.02 on the interface. The external loading is applied at a =

0.55m, b = 0.36m in form of tire balance F = mω2R cosωt at a frequency ω, with
m = 6 g. Further details on the geometric dimension and material properties are
provided in Table 3.2.

For a plate of thickness e, Young’s modulus E and Poisson’s ratio ν, the bending
rigidity has the form:

D =
Ee3

12(1− ν2)
(3.3)

The wavenumber k for an exitation frequency of 100 Hz is:

k =
√
ω (

eρ

D
)
1
4 (3.4)

where ρ is the mass density.
With a targeted frequency band ranging from 0 to 100 Hz, the minimum value of

wavelength is found to be 0.4431 m by using the following relation [FRANK 2007]:

λ =
2π

k
(3.5)

A convergence study on the FE mesh size has been performed, and 4 elements
per wavelength are utilized for the mesh size, i.e. δx = 0.1375 mm as element
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Table 3.2: Outlines of model geometry and material properties

Physical quantity Unit Value

Plates

material steel
length m 1.1
width m 0.6
thickness mm 2
Poisson’s ratio 0.285
density kg/m^3 7800
Young’s modulus Pa 2.10E+11
Shear modulus Pa 8.17E+11

Joint

thickness mm 2
length mm 3
Poisson’s ratio 0.49
Young’s modulus Pa 1.0E+08
Shear modulus Pa 3.4E+07

length and δy = 0.12 mm as element width. This provides a good compromise
between accuracy and computation time. The system is discretized into a FE
model with 18 stiffness elements on the interface, 25 rectangular elements on S1

and 15 rectangular elements on S2. The FE model contains 54 nodes and 180
DOFs, in considering translation displacement in x and z direction and rotation in
θy. As boundary conditions, the four nodes on the edge of the plate are clamped
to the ground.

3.2.1 Reduced model

The double modal synthesis presented in Chapter 1.2 is employed to study the
dynamic performance of the system, so as to reduce the computational cost.

The reduction coefficient, denoted by rc, is a common criterion in the mode syn-
thesis method; it is defined as follows: if the maximum frequency of the targeted
frequency band is 100 Hz, then the modes less than rc ∗100 Hz are all to be selected
to describe the model’s dynamic behavior. For the determination of reduction coef-
ficient for this plates system, 0.002 m and 0.003 m are respectively set as thickness
and length of the rubber layer. The frequency band of interest of the external load is
from 0 Hz to 100 Hz. According to a convergence study of the reduction coefficient,
α = 3 is used for all types of retained modes, i.e. the fixed interface modes of each
plate and branch modes of the built-up model are retained up to 3 ∗ 100 Hz.

In order to verify the quality of reduced model, three metrics are used in this part,
natural frequency error between the reduced model and the complete FE model,
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modal assurance criterion between reduced mode shapes and accurate mode shapes,
and forced responses error between the reduced model and the complete FE model.

A comparison of system’s natural frequency and transfer function is carried out
as shown respectively in Figures 3.5 and 3.6. In addition, MAC values have been
calculated to compare the reduced mode and exact mode shapes. The MAC values
are in fact greater than 0.9 up to 100 Hz, which confirms the quality of the reduced
model.

mode number
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Figure 3.5: Comparison of normal modes frequencies of the full FE model and the
reduced model

Table 3.3 compares the retained DOFs of the reduced model and the DOFs of the
full FE model. It is shown that 50% of DOFs are truncated by applying the proposed
modal synthesis. This finding implies a significant reduction in the simulation time
for large-scale systems.

Table 3.3: Comparison of mode number retained in the full and reduced model

Model Excitation Branch
Mode

S1: Fixed
Interface Mode

S2: Fixed
Interface Mode Total

FE 1 36 83 48 96
α = 3 1 22 21 13 57

Simulations have been conducted on a server containing 32 Xeon (R) processors
running at 2.9 GHz. Considering the 5,000 linearly-spaced excitation frequencies
from 0 to 350 Hz, the CPU time consumed when calculating average pressure vari-



50 Chapter 3. Case study – linear systems

frequency (Hz)

20 40 60 80 100 120 140 160 180 200

D
is

p
la

c
e
m

e
n
t 
(d

B
)

-130

-120

-110

-100

-90

-80

-70

-60

-50

FE

Reduced-CB

Reduced-BI

Figure 3.6: Comparison of forced responses of the full FE and reduced model

ations in the cavity over this frequency band is compared for typical models: the
full FE model, the reduced model obtained using Craig & Bampton method, the
reduced model obtained with the double modal synthesis method, and lastly the
reduced model obtained with the proposed modal synthesis method, as presented
in Table 3.4. All reduction techniques serve to lower computation time, and several
observations are worth discussing. The double modal synthesis consumes less time
than the Craig & Bampton method by also condensing interface DOFs. Craig &
Bampton, on the other hand, conserves all DOFs on the interface, which may be
prohibitive in certain cases. The proposed modal synthesis method consumes a bit
more time than the double modal synthesis method; this outcome is reasonable since
it conserves all special region modes.

Table 3.4: CPU time comparison of different reduction techniques

Methods FE
(all DOFs retained)

Craig&Bampton
Method

Extensive Modal
Synthesis

CPU time (s) 5.39 2.35 1.09

3.2.2 A modal overview based on Modal-based criteria

A modal overview is accessible with the modal parameters defined in Chapter 1.2:
Cje, Cji1 , Cji2 and Ci2j . The modal criteria are investigated for the following
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interface configurations, as depicted in Table 3.5:

Table 3.5: Interface configurations

Variables Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Length (mm) 5.3 8.5 7 0.1 3 0.9

Thickness (mm) 0.8 6.1 6.1 10 1.9 8.7

On one hand, different interface configurations render the responsible modes for
vibration of one certain modal parameter different. In Figure 3.7 for Cej , mode
2 and 5 are the dominant mode for vibration at 45.5 Hz in case of group 1, 2
and 5; while mode 1, 2, 3 and 4 are responsible for the vibration in case of group
3; and mode 3 for group 4 and 6. If we compare Cej for group 2, 3 and 4 with
other configurations, the average level of these modal parameters are lower, i.e. the
maximum value 2.5 vs 3.5. Whereas in Figure 3.8 for Cji1 , mode 2, 4, 5 and 6 are
the dominant modes for vibration at 45.5 Hz in case of group 1; while mode 2 is
responsible for the vibration in case of group 2, 3 and 5; and mode 2 and 4 in case
of group 4 and 6. If we compare Cji1 for group 1 with other configurations, the
average level of these modal parameters are lower. The same analysis can be carried
out for Cji2 and Ci2j in Figures 3.9 and 3.10.

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

C
ej

=1.26 l=5.3mm e=0.8 mm

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

C
ej

=1 l=8.5mm e=6.1 mm

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

C
ej

=0.99 l=7mm e=6.1 mm

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

C
ej

=1.35 l=0.1mm e=10 mm

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

C
ej

=1.02 l=3mm e=1.9 mm

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

C
ej

=1.32 l=0.9mm e=8.7 mm

Figure 3.7: Cej at 45.5 Hz for different interface configurations.

One the other hand, comparative study on modal parameters for one interface
are carried out. Take the example of group 1, dominant modes of vibration for the
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Figure 3.8: Cji1 at 45.5 Hz for different interface configurations.
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Figure 3.9: Cji2 at 45.5 Hz for different interface configurations.
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Figure 3.10: Ci2j at 45.5 Hz for different interface configurations.

same interface configuration are different for all the four modal parameters. The
average value of Cej is larger than the others, and that of Cji2 is smaller than
the others. Moreover, when the configuration change from group 1 to group 3,
the average level of the modal parameters are different. In comparing Figures 3.11
and 3.12, it is shown that the average levels of Ci1j , Cej and Ci2j in case of group
1 are higher than those for group 3; while the average level of Ci2j for group 1 is
lower than that for group 3.

Moreover, the weighting of each parameter is not evident, multi-optimization
shall be performed.

3.2.3 Meta-models and Pareto optimal

The imposed upper and lower bounds of the thickness and length for optimization
are 0.1 mm and 10 mm. Before the optimization procedure, surrogate models by
Kriging approximations for these modal parameters are computed and depicted in
Figures 3.13-3.15. The mean squared error of the prediction from all these surrogate
models and the real value is very small, which shows that the quality of the surrogate
models is quite good.

Optimizations were then conducted based on these surrogate models. The ob-
jective is to achieve Pareto optimal of Cje, Cji1 , Cji2 and Ci2j with θ and l as
the design variables. A convergence study of the population number and generation
number has also been carried out. As a compromise between computational time
and accuracy, 500 populations and 150 generations were chosen for this optimiza-
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tion. The 4D Pareto front was obtained using the DACE toolbox [Lophaven 2002].
The 3D view of the 4D Pareto front is shown in Figure 3.17.
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Figure 3.17: Distribution of each modal parameter on the 4D Pareto front for Cje,
Cji1 , Cji2 and Ci2j in function of rubber characteristics at at 45.5 Hz

The distribution of design variables corresponding to the 4D Pareto front is
plotted in Figure 3.18. The coordinate data [θ, l] in these figures are the same as
those that output Cej , Cji1 , Cji2 and Ci2j on the 3D Pareto front. It can be seen
that the optima are located in several zones.

The average vibration amplitude on plate 2 computed with the proposed modal
synthesis approach described in Chapter 1 is depicted in Figure 3.19. For the thick-
ness and length varying from 0.1 mm to 10 mm and excitation frequency varying
from 0 Hz to 50 Hz, the region for which the average forced response attains its
minimum resides in the blue zone. This figure also shows that the forced response
depends on the ratio of θ and l.

As stated above, Kriging approximations for the relevant modal parameters have
been conducted prior to the optimization procedure. To verify whether the surrogate
models are correct, the predictions output by the Kriging approximation and the true
values given by computer experiment at untried design sites have been compared.
The surrogate models of average amplitude of plate 2 appear to be well substantiated
by the small mean squared errors, as shown in Figure 3.20.

By comparing Figure 3.19 and Figure 3.18, it is revealed that the optimum
design by evaluating modal parameters locates in the same region as that obtained
by the direct evaluation of transfer function. This supports the strategy of choosing
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modal parameters as objective functions for optimization. Two points in two zones
on Figure 3.18 are chosen to compute average vibration amplitude on plate 2. In
Figure 3.21, the vibration level obtained with these two points are compared with
two arbitrary configuration, and found to be lower, which is in accordance with the
optimization objective. It can be seen that the resonant frequency is shifted away
from the excitation frequency for the two configurations from Pareto front, while
that of the two arbitrary points not. That is the main reason that the average
amplitude on plate 2 around 45.5 Hz of one is lower than that of another.

3.2.4 Conclusions

To summarize, we have presented herein the simulation results of an assembled
plates system by employing the double modal synthesis presented in Chapter 1.
First of all, the FE model of the assembled system was built. As a second step, an
extended hybrid modal synthesis was then applied on the FE model. The quality of
the reduced model was assured by examing its natural frequency, mode shapes and
forced responses. Third, with this reduced model, modal parameters characterizing
vibration transmission paths in the model, were deduced and then surrogated with
Kriging approximations. The small mean squared errors at untried points ensure the
quality of the surrogate models. A sensitivity analysis on the interface configuration
was also conducted, and results showed that these modal parameters vary with θ

and l. Lastly, the MOO procedure is accomplished with NSGA-II, and optimization
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results are validated by analyzing the modal parameters. The localization of inter-
face configurations in Pareto front suggests that the optimal vibration amplitude
on plate 2 can be obtain with θ = 8 mm and l = 2.1 mm, which is in accordance
with the results from a direct calculation of forced responses (−79.5 dB) by using
FE model.

3.3 An assembled box filled with air

Simulation results of an assembled box filled with air are reported in this section.
The aim is to show the efficiency of triple modal synthesis outlined in Chapter 2
to analyze coupled fluid-structure systems, as well as improving acoustic comfort
in the cavity. The analysis is in analogous with that for assembled plates system
in Section 3.2. Three modal parameters depending on the interface configuration
are considered to be dominant for indicating the influence of external load on the
pressure variations in the cavity: Caj , Cji1 and Ci2j .

The FE model contains a total of 4,810 DOFs, 900 elements in the cavity, 340
elements in S1 and 220 elements in S2, as shown in Figure 3.22. The model is
excited with a harmonic excitation (F) of 1, 000 N at a frequency ω. The excitation
is located at x = 0.200 m, y = 0.189 m and z = 0.650 m, hence lying on S1.
Rayleigh damping has been integrated into the model. The damping ratios are:
α = 2, and β = 5e−6.

Further details on the geometric dimension and material properties are provided
in Table 3.6.

With a targeted frequency band ranging from 0 to 350 Hz, a convergence
study on the FE mesh size has been performed, and 4 elements per wavelength are
utilized for the mesh size, which provides a good compromise between accuracy
and computation time.
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Figure 3.22: FE model with all DOFs retained

Table 3.6: Model characteristics

SubStructure Physical quantity Unit Value

Plates

material steel
type Kirchhoff
thickness mm 2
Poisson’s ratio 0.285
density kg/m^3 7800
Young’s modulus Pa 2.10E+11
Shear modulus Pa 8.17E+11

Joint

thickness mm [0.1, 10]
length mm [0.1, 10]
Poisson’s ratio 0.49
Young’s modulus Pa 1.0E+08
Shear modulus Pa 3.4E+07

Cavity

material air
density kg/m^3 1.225
velocity m/s 330
dimension m^3 0.6 ∗ 0.63 ∗ 0.65
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3.3.1 Reduced model

Triple modal synthesis presented in Chapter 2.2 is employed so as to avoid the con-
siderable computational cost. According to a convergence study of the reduction
coefficient, α = 3 is used for all types of retained modes, i.e. fixed interface modes,
branch modes and acoustic modes. The quality analysis of the reduced model is con-
ducted by evaluating the natural frequency of normal modes. The natural frequency
error always turns out to be less than 1% up to 350 Hz, as shown in Figure 3.23. In
addition, MAC values have been calculated to compare the reduced mode and exact
mode shapes. The MAC values are in fact greater than 0.9 up to 350Hz, which
confirms the quality of the reduced model.
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Figure 3.23: Comparison of normal modes frequencies of the full FE model and the
reduced model

Figure 3.24 reveals the modal density of the reduced model, including the fixed
interface modes, branch modes and acoustic modes. This depiction provides ev-
idence of the need to disperse the modes. For example, when θ = 1 mm and
l = 1 mm, the modal density study indicates that the branch mode and fixed inter-
face mode of S1 both occur at 242 Hz, which leads to violent pressure variations.

The coincidence of resonant modes can be avoided by adjusting the natural
frequency of branch modes, which can be achieved by varying the interface configu-
ration parameters θ and l. Figure 3.25 presents the variation range of branch mode
frequency along with θ [0.1 mm, 10 mm] and l [0.1 mm, 10 mm]. Figure 3.25 sug-
gests that the natural frequency of branch modes is sensitive to both θ and l, which
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confirms the fact that optimization of the dynamic behavior of vehicle structures
can be attained by means of passive interface controls.

Table 3.7 compares the retained DOFs of the reduced model and the DOFs of the
full FE model. It is shown that 90% of DOFs are truncated by applying the proposed
modal synthesis. This finding implies a significant reduction in the simulation time
for large-scale systems.

Table 3.7: Comparison of mode number retained in the full and reduced model

Model Excitation Branch
Mode

S1: Fixed
Interface Mode

S2: Fixed
Interface Mode

Acoustic
Mode Total

FE 1 480 1913 1206 1210 4810
α = 3 1 74 184 109 60 428

Simulations have been conducted on a server containing 32 Xeon (R) processors
running at 2.9 GHz. Considering the 5, 000 linearly-spaced excitation frequencies
from 0 to 350 Hz, the CPU time consumed when calculating average pressure vari-
ations in the cavity over this frequency band is compared for typical models: the
full FE model, the reduced model obtained using Craig & Bampton method, the
reduced model obtained with the double modal synthesis method, and lastly the
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reduced model obtained with the proposed modal synthesis method, as presented
in Table 3.8. All reduction techniques serve to lower computation time, and several
observations are worth discussing. The double modal synthesis consumes less time
than the Craig & Bampton method by also condensing interface DOFs. Craig &
Bampton, on the other hand, conserves all DOFs on the interface, which may be
prohibitive in certain cases. The proposed modal synthesis method consumes a bit
more time than the double modal synthesis method; this outcome is reasonable since
it conserves all special region modes.

Table 3.8: CPU time comparison of different reduction techniques

Methods FE
(all DOFs retained)

Craig&Bampton
Method

Double Modal
Synthesis

Extensive Modal
Synthesis

CPU time(s) 2989 276 75 81

3.3.2 Modal-based criteria and sensitivity analysis

In this section, the modal parameters deduced in Section 2.4 will be investigated. As
revealed by their mathematical expressions, all these parameters are sensitive to the
excitation frequency and reach their peaks when ω = ωn

k. To validate this property,
a simulation has been performed on a model with θ = 1 mm and l = 1 mm. It
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can be seen from Figures 3.26 through 3.29 that: Cae, Cai1 , Caj and Cai2 all reach
their peaks when ω = ωa

k; Ci1e reaches its peak when ω = ωi1
k; Cji1 reaches its

peak when ω = ωj
k; and Ci2j reaches its peak when ω = ωi2

k. The levels of Cae,
Cai1 , Caj and Cai2 are found to be higher than the level of the others as well.
This finding can be explained by the modal participation coefficient G̃k

n: since the
denominator mk

a of G̃k
a is much lower than mk

B, m
k
i1

and mk
i2
. Consequently, the

pressure variations related to these quantities may be more sensitive to the variation
in interface configurations. This point may be useful when it comes to identifying
the modes responsible for pressure variations inside the cavity.
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Figure 3.26: Pressure variations induced by the vibration of structure components

The same approach is applicable to the branch mode frequency shown in Fig-
ure 3.25, and a sensitivity analysis of interface configurations for the proposed cri-
teria has been conducted. The range of variation is θ = [0.1 mm, 10 mm] and
l = [0.1 mm, 10 mm]. The simulation results (Figs. 3.30 to 3.32) show that, among
these seven terms, Caj , Cji1 and Ci2j change with the interface configuration, while
the other four remain unchanged. This outcome is in accordance with the mathmat-
ical expressions of the modal parameters, as outlined in Section 2.4. These figures
show that these modal parameters depend on the ratio of θ and l. Moreover, it
appears that Caj , Cji1 and Ci2j do not reach their minima at the same coordinate
data. A compromise should thus be made among these three parameters.

Considering the noise transmission path, which starts from excitation, via S1 and
the interface, and ultimately arrives in the cavity, the relevant parameters along this
path are: Cji1 and Caj . The impacts of these criteria on the noise transmission path
are not identical. As indicated in Table 3.9, Cji1 is more sensitive to the variation
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Figure 3.27: S1 displacements induced by the displacements of the excitation nodes
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Figure 3.29: S2 displacements induced by the displacements of the interface nodes
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in θ and l than Caj and Ci2j ; Caj is greater than Ci2j and Cji1 in dimension; and
it appears that the impact of Ci2j always lies in the middle of Caj and Cji1 . This
finding can be explained by the fact that Ci2j corresponds to the noise transmission
path from the interface to S2, which is less determinative for pressure variations
in the cavity. Cm

n represents the average value of criteria Cn within the targeted
frequency band.

To enable us to study the critical factors for pressure variations in the cav-
ity, optimizations have been performed based on two groups of objective functions:
[Caj ,Ci2j ,Cji1 ], and [Caj ,Cji1 ].

Table 3.9: Sensibility of defined criteria to rubber properties

Caj Cji1 Ci2j

[min−max] 16.3 - 16.5 2.5 - 4.5 3.9 - 4.2
max−min

Cm
n

1.2% 57.1% 7.4%

3.3.3 Meta-models and Pareto optimal

As stated above, Kriging approximations for the relevant modal parameters have
been conducted prior to the optimization procedure. 10,000 simulations were carried
out in order to construct the data for Kriging interpolation. The range of design
sites were set as follows: θ and l are to be equally distributed within a rectangular
grid from 0.1 mm to 10 mm by means of applying Latin hypercube sampling. The
combination of a zero-order polynomial regression model and a Gaussian correlation
model has been tested to be robust and efficient when interpolating Caj , Cji1 and
Ci2j . To verify whether the surrogate models are correct, the predictions output
by the Kriging approximation and the true values given by computer experiment at
untried design sites have been compared. The surrogate models appear to be well
substantiated by the small mean squared errors, as shown in Figures 3.33-3.35.

Optimizations were then conducted based on these surrogate models. The objec-
tive is to achieve Pareto optimal of Caj , Cji1 and Ci2j with θ and l as the design vari-
ables. The 3D Pareto front was obtained using the DACE toolbox [Lophaven 2002].
The 2D view of the 3D Pareto front is shown in Figures 3.36-3.38.

The distribution of design variables corresponding to the 3D Pareto front is
plotted in Figure 3.39. The coordinate data [θ, l] in these figures are the same as
those that output Caj , Cji1 and Ci2j on the 3D Pareto front. It can be seen that
the optima are located in several zones. Figure 3.40 displays the surface of average
pressure variations in the cavity. Note that the design parameters on the 3D Pareto
front result in lower pressure variations, which supports the strategy of choosing
modal parameters as objective functions for optimization.

From a modal point of view, the optima given in the 3D Pareto front are also
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Figure 3.33: Kriging model of Caj in θ and l at 250 Hz
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Figure 3.34: Kriging model of Cji1 in θ and l at 250 Hz
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Figure 3.35: Kriging model of Ci2j in θ and l at 250 Hz
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rational. The values of λkajG̃
k
aj , λ

k
ji1

G̃k
ji1

, and λki2jG̃
k
i2j

for all modes are pinpointed
in Figure 3.41, which can be explained as follows: an arbitrary design site in the
grid is chosen, and the corresponding results are plotted on the upper subfigure; an
optimized design site on the Pareto front is chosen, and the corresponding results
are plotted on the lower subfigure. The value of

∑N
k=1(λknG̃

k
n) is marked by blue

horizontal line. Figure 3.41 reveals that acoustic mode number 1, branch mode
numbers 22 and 23, S2 fixed interface mode numbers 15 and 16 are all responsible
for the high noise level inside the cavity. It can also be observed that modal cri-
teria on the bottom are smaller than those on top, which is in agreement with the
optimization target.
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Figure 3.41: Comparison of modal parameters for an excitation frequency of 250
Hz - Arbitrary design site: l = 3 mm, θ = 5 mm(upper), Optimal design site:
l = 8 mm, θ = 3 mm(lower).

Table 3.10 lists the average pressure variations within the cavity for four arbitrary
sites within the design range, and two optimal sites on the Pareto front are evaluated
using the reduced model. This matches well with the results given by modal criteria
in Figure 3.41. Several observations can be forwarded. For θ = [0.1 mm, 10 mm]

and l = [0.1 mm, 10 mm], the maximum value of the average pressure variation in
the cavity equals 42.9 dB, and the average value of the average pressure variation
in the cavity is 38 dB. However, the maximum value of average pressure variation
on the Pareto front is 38.4 dB, with the average value of average pressure variation
on the Pareto front being 37.1 dB. Moreover, the Pareto front provides a minimum
value of 35.8 dB.

Further study of the modal parameters has been carried out herein. Let’s start
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Table 3.10: Comparison of average pressure variations for different configurations

Reduced model at ω = 250 Hz

Group 1 2 3 4 5 6
Length (mm) 6.6 1.0 3.0 5.0 8.0 1.3

Thickness (mm) 0.1 4.3 5.0 3.0 3.0 0.4
Pressure Variation(dB) 39.3 38.6 38.3 37.5 36.8 35.9

by assuming that the problem can be simplified into a two-objective optimization
of Caj and Cji1 with respect to θ and l. Then just like for the three-objective
optimization problem, 500 populations and 150 generations are performed with the
non-domination-based genetic algorithm on the two-objective optimization problem.
The 2D Pareto front is shown in Figure 3.42, and the corresponding distribution of
interface configurations is presented in Figure 3.43.
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Figure 3.42: 2D Pareto front for Caj and Cji1

No significant difference is observed between the optimization results in Fig-
ures 3.43 and 3.39. In referring to Figure 3.40, the results from the two-objective
optimization are even more suitable for this case.

3.3.4 Conclusions

To summarize, we have presented herein the simulation results of a coupled fluid-
structure system by employing the strategy proposed in Chapter 2. First of all, the
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FE model of the coupled fluid-structure system was built. As a second step, an
extended hybrid modal synthesis was then applied on the FE model. The quality of
the reduced model was assured by the fact that the natural frequency error remained
less than 1%, the MAC value greater than 0.9 up to 350 Hz and the good coincidence
of forced responses. In the meantime, as an initial attempt at verifying whether
global characteristics can be influenced by local modifications on the interface, a
sensitivity analysis of the natural branch mode frequency was performed. Third,
with this reduced model, Caj , Cji1 and Ci2j , characterizing vibration transmission
paths in the model, were investigated. Meta-models of these modal criteria were
constructed with Kriging approximations. The small mean squared error at untried
points ensured the quality of the surrogate models. A sensitivity analysis in respect
to θ and l was conducted to show the influence of the interface configuration on
modal criteria. Lastly, simulation results showed that average pressure variations
in the cavity may vary from 42.9 dB to 35.8 dB for θ = [0.1 mm, 10 mm] and
l = [0.1 mm, 10 mm]. The localization of interface configurations in both the 3D
and 2D Pareto fronts suggests that a lower noise level can be found at: θ = 1.3 mm

and l = 0.4 mm.



Part 1: Conclusions

A new strategy for reducing vibration level of the structure and raising acoustic
comfort in the cavity is proposed in this part, through the use of passive interface
controls.

The reduced model, based on an extensive hybrid modal synthesis, has been
applied herein: double modal synthesis for assembled structures and triple modal
synthesis for coupled fluid-structure system; this model converts the entire complex
model into a simpler and smaller-sized one while maintaining sufficient information
to describe system performance over the targeted frequency band. The branch
modes were also observed to be sensitive to interface characteristics, which confirmed
the feasibility of our strategy. Instead of regulating the characteristics of the entire
system, the optimization of interface characteristics can also improve the system’s
dynamic behavior.

Modal-based criteria characterizing vibration transmission and noise transmis-
sion paths between substructures in the system have been derived to a further ex-
tent. These criteria depend on the excitation frequency, the natural frequency of
the fixed interface modes, the branch modes and acoustic modes, and the modal
participations. Modal parameters were found to depend on interface characteristics
and can thus be employed in the optimization procedure. This strategy is based on
the assumption that the dynamic behavior is dominated by the direct paths, which
is similar to the statistical energy analysis.

The significant advantage of a mathematical model substituting for the analytical
functions of the criteria lies in lowering the computational cost. The low mean
square errors of these models justify the rationality of surrogate models. The optima
selected by the non-domination-based genetic algorithm for MOO has been validated
by comparing average vibration level of the reduced model and by analyzing the
proposed modal criteria. The optima shown here represent better choices at these
design sites for system’s acoustic comfort and dynamic performance.
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Abstract: We have studied methods to optimize the dynamic behavior of an
assembled structure and a coupled fluid-structure system in Chapters 1 and 2 in
Part I. These systems were assumed to be linear, while the structures are more likely
to be nonlinear in engineering. The linear modal synthesis is no longer sufficient to
analyze these structures, and renders results biased. The theory of nonlinear modal
analysis has witnessed significant developments due to requirements in analyzing
large flexible structures that are in general nonlinear. A general method for analyz-
ing nonlinear structures is presented in this Part. The proposed strategy is based
on a generalized nonlinear modal superposition approach supplemented by a double
modal synthesis strategy. The reduced nonlinear modes methodology combines non-
linear mode concept with reduction techniques. The modal parameters containing
essential nonlinear information are determined and then employed to calculate the
stationary responses of the nonlinear system subjected to various types of excita-
tion. The advantages of the proposed nonlinear modal synthesis are mainly derived
in three ways: 1) computational costs are considerably reduced when analyzing large
assembled systems with local and weak nonlinearities; 2) the nonlinear modes can
be used to analyze the same system under various external loads without having to
reanalyze the entire system; and 3) the nonlinear effects can be investigated by a
modal overview. The proposed strategy is applied to an assembled system composed
of plates and nonlinear rubber interfaces.

The objective of Chapter 5 is to implemente nonlinear modal synthesis described
in Chapter 4 to study the dynamic performance of assembled structures with dry
friction. Both complex modes and real modes can be used in the synthesis, leading
to a particular frictional damping term. A generalized Masing model is employed
to describe the dry friction in the modal synthesis. The implementation of the
nonlinear modal synthesis combined with the generalized Masing model yields a
simple, fast and efficient numerical method to describe nonlinear performance of
structures with dry friction. A simple two degrees of freedom example, a cantilevel
beam model and an assembled plates system are used to show the efficiency and
reliability of this method; passive control of normal force applied on contact point
where dry friction occurs is conducted in the aim to optimize the dynamic behavior
of assembled structures.





Part 2: Introduction

Numerical methods for analyzing nonlinear structures
In the context of engineering structural dynamics, systems are generally large-

sized and of nonlinear nature. In order to solve the nonlinear problems, numerical
time integration methods, such as the Newmark method and Runge-Kutta method,
are often used [Ascher 1998]. These methods yield quite accurate results though
appear to be time-consuming, especially when analyzing large nonlinear systems
containing many degrees of freedom (DOFs).

To overcome this drawback, Rosenberg proposed a nonlinear normal mode
(NNM) concept to study nonlinear systems [Rosenberg 1962]. His premise was
that resonance occurs in the neighborhood of the normal mode vibration re-
gardless of whether the system is linear or nonlinear; moreover, the response
around the main resonance can be represented by this main resonant mode
response. The NNMs concept has been further developed by various au-
thors based on analytical aspects [Nayfeh 2007, Awrejcewicz 2012], numerical as-
pects [Hugo Ramon 2004, Kerschen 2009] and experimental aspects [Setio 1995,
Ewins 2000, Gibert 2001, Peeters 2009, Ciambella 2015]. Based on this NNM con-
cept, Szemplinska-Stupnicka [Szemplinska-Stupnicka 1980] legitimized a single non-
linear modal approach by solving the steady-state responses of nonlinear differential
equations using approximate methods, e.g. the harmonic balance method, averaging
method and asymptotic method [Nayfeh 1979]. In relying on this single nonlinear
modal method, Jezequel and Lamarque have developed a nonlinear modal analysis
(NLMA) method to describe the forced response of harmonically excited systems for
a two-DOF system [Jézéquel 1991]. Furthermore, Setio et al. [Setio 1992] extended
this NLMA method to express general transient responses as the algebraic addition
of nonlinear modal responses of general systems.

These generalized nonlinear modal analysis methods are efficient in reducing the
computation time when analyzing nonlinear systems relative to time integration
methods, yet prove to be time-consuming since the iterations are being integrated
into the numerical approaches. Reduction techniques are therefore required. A com-
prehensive review of reduction techniques is presented in [Touzé 2006, Lülf 2013].
In general, these methods are devoted to analyzing complex nonlinear phenomena.
While set up for weak, large nonlinear systems, the nonlinear problem may be
simplified under appropriate assumptions and lead to a faster algorithm.

To obtain a reduced-order model of industrial structures, the linear mode syn-
thesis (LMS) theory has been developed into a powerful tool by various authors for
analyzing mechanical systems as described in Part I. These techniques are all lim-
ited to the linear systems, while the nonlinear effect on global structural dynamics
cannot be neglected in most cases and moreover linear assumptions in these cases
may lead to considerable discrepancies. We propose herein to integrate reduction
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techniques with the nonlinear mode concept in studying the dynamic performance
of assembled systems. Before calculating nonlinear normal modes, the reduction
techniques are first applied to the nonlinear model in the case of free vibrations:
physical displacements of the system are projected onto the generalized modal co-
ordinates. A second reduction proceeds by selecting the dominant nonlinear normal
modes obtained by solving the reduced nonlinear problem with numerical iteration
methods.

Nonlinear models can subsequently be reduced by integrating reduction tech-
niques analogous to those employed in the LMS method. It is worth noting that
various reduction techniques exist for extending the NLMA theory; nonetheless, the
chosen reduction technique must comply with the particular case study. A typical
nonlinear industrial case consists of assembled structures containing nonlinearities
located along interfaces between substructures. To analyze the nonlinear effects
and calculate the steady-state responses of these systems under a constrained
computation time, fast and efficient methods are needed. A discussion on all
reduction techniques available has not been included herein, but special attention
has been paid to Craig & Bampton reduction and double modal synthesis based on
branch modes.

One objective of this thesis is to extend this nonlinear normal analysis method to
study nonlinear behavior of large-size system; Reduction techniques are integrated
with nonlinear mode concept to study the dynamic behavior of assembled systems
in Chapter 4.

Vibration control by using dry friction dampers
The dynamic behavior of assembled structures, such as vehicles or large

lightweight space structure, is significantly influenced by structural connections.
Damping treatments need to be conducted on these structures to mitigate the vi-
bration problems. In some aerodynamic applications, high temperatures and high
rotation speeds prevent traditional damping treatments. In case that no special
damping treatment is added to these structures, dry friction damping at bolted joints
may be the most important damping source [Gaul 1997, Gaul 2008, Louis 1983].

Since dry friction devices are usually introduced to reduce resonant responses of
the systems, the simulation of these friction devices appears to be very important
to find the optimum parameters during the pre-design process.

For the simulation of mechanical systems with dry friction, the friction force
model plays a fundamental role. The choice of friction model depends on the con-
crete usage of friction and many physical parameters characterizing the contact
surface. Dry friction consists of two states: stick state and slide state. Various
adapted models have been developed to describe friction phenomena in nonlinear
dynamics [Geffen 2009]. The most basic friction model is the Coulomb model, which
provides a threshold value for the friction force, above which motion would com-
mence. Complex phenomena such as hysteresis, stick-slip and Stribeck effect can
be exhibited by dry friction. To solve this problem, other dynamic models such as
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the Dahl’s model, the LuGre model, the Leuven’s model have been developed with
velocity dependent functions and additional damping terms associated with micro-
and macro- displacement [Piatkowski 2014]. It should be acknowledged that each
model has its own distinctive pros and cons, while none of them can claim general
validity.

In engineering applications concerned with dry friction, the hysteresis phe-
nomenon is widely prevalent in nature. Various approaches and mathematical mod-
els [Bouc 1967, Duhem 1980, Krasnoselskii 1989] are available for the description of
hysteresis. Masing rule is employed in this chapter to characterize the hysteresis be-
havior during the modal analysis. Masing’s hypothesis [Masing 1926, Chiang 1999]
is that the unloading and reloading branches of the steady-state hysteretic response
of the system are geometrically similar to the initial-loading curve. Based on this
assumption, nonlinear force induced by dry friction in steady-state can be calculated
with the initial-loading curve.

Due to the geometry of the dry friction damping element, the friction force varies
with the physical displacement of friction point along with stick-slip behavior of the
system. In particular, the overall damping level as well as stick-slip motion amount
dependent strongly on the displacement of friction point [Ferri 1996]. This renders
the problem of nonlinear nature. To analyze these nonlinear structures in steady-
state, time integration methods [Gavin 2014] such as Newmark method, Runge-
Kutta method can provide quite accurate results, but appearing to be quite time-
consuming, especially when analyzing large nonlinear systems containing numerous
DOFs [Ascher 1998]. While industrial systems are in general of large-scale and their
discrete models contain a great deal of DOFs. Geometry optimization of these
nonlinear systems turns out to be impossible with time integration methods or
traditional iterative methods. These methods may induce large discrepancies if
time steps are not properly chosen. To fulfill the optimization in the pre-design
process of industrial systems, fast and efficient numerical methods are required.

In relying on Masing’s rule, dry friction models are integrated into nonlinear
modal synthesis presented in Chapter 4 to study the nonlinear phenomena due to
dry friction in Chapter 5.
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4.1 Introduction

This chapter describes a simple and fast numerical procedure to study the steady-
state responses of assembled structures with nonlinearities along continuous inter-
faces. The systems under consideration herein are large assembled systems, with
slight damping and weak nonlinearity continuously located in connections between
substructures, as shown in Figure 4.1.

The governing motion equation is expressed as Equation (4.1) [Nayfeh 1979]:

Mü + Du̇ + Ku + f̃(u) = F (4.1)

where M is the mass matrix, D the damping matrix, K the stiffness matrix, and
u the array of unknown physical displacements. F is the force vector applied on
the system. f̃(u) is the nonlinear restoring force, which depends on the unknown
physical displacements and renders the system nonlinear nature.
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Figure 4.1: Substructures with nonlinear interfaces

4.2 Reference numerical method – Runge-Kutta

The Runge-Kutta methods are a family of implicit and explicit iterative methods,
which includes the well-known routine called the Euler Methods, used in temporal
discretization for the approximate solutions of ordinary differential equations. The
most widely known member of the Runge-Kutta family is generally referred to as
“RK4" or “classical Runge-Kutta method" [Hazewinkel 2001, Butcher 1987].

The approach is to rewritten the N second order differential equation in the
following 2N first order differential equation by employing (u,v), where u̇ = v:[

v̇

u̇

]
=

[
M 0

0 I

]−1 [ −Dv −Ku− f̃(u) + F cos(ωt)

v

]
(4.2)

Defining a state vector y, with yT = [u,v]T , the problem is reformulated as
follows:

ẏ = f(t,y) (4.3)

where f is a given function of t and y, representing the rate at which y changes.
y is the unknown function of time t, where y0 is the corresponding y-value at the
initial time t0, i.e., y(t0) = y0.

The RK4 approximation of y(tn+1) is determined by the present value y(tn) plus
the weighted average of four increments. Defining is step-size h > 0, each increment
is the product of h and an estimated slope specified by function f on the right-hand
side of the differential equation.

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h,
(4.4)

Here k1 is the increment based on the slope at the beginning of the interval,
using y, which is also referred to Euler’s method; k2 is the increment based on the
slope at the midpoint of the interval, using y + h

2k1; k3 is again the increment based
on the slope at the midpoint, but now using y + h

2k2; k4 is the increment based on
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the slope at the end of the interval, using y + hk3:

k1 = f(tn,yn),

k2 = f(tn + h
2 ,yn + h

2k1),

k3 = f(tn + h
2 ,yn + h

2k2),

k4 = f(tn + h,yn + hk3).

(4.5)

Runge-kutta method is among the most popular for solving nonlinear functions,
providing a simple mechanism for iteratively converging to the solution with a severe
step-size and a close initial guess [Butcher 1987]. Currently, there are no methods
which can guarantee global convergence in a nonlinear problem, so the importance
of estimating a proper step-size and initial guess can not be over-stressed, resulting
in expensive high computational effort during the calculations.

4.3 Theoretical basis of nonlinear modal analysis

The nonlinear modal analysis (NLMA) entails decoupling Equation (4.1) with N

uncoupled equations through the use of nonlinear normal modes (NNMs), as well
as solving for eigensolutions to these uncoupled equations.

Notations analogous to those used in linear mode synthesis (LMS) introduced
in chapter 1. Let’s define λ̃j and Φ̃j as the eigenvector for a given modal amplitude
|qj |, respectively. According to [Setio 1992], when normal modes are slightly coupled,
the forced responses of the nonlinear model can be expressed as Equation (4.6) by
applying the Ritz-Galerkin method:

u cos(ωt) ≈
N∑
j=1

uj cos(ωt) ≈
Nr∑
j=1

qjΦ̃j cos(ωt) (4.6)

The nonlinear resonant frequencies ω̃j and the nonlinear mode Φ̃j of the nonlin-
ear system can be calculated by a standard eigenvalue solution for each equivalent
stiffness value. Then modal amplitudes qj corresponding to the nonlinear terms ω̃j
and Φ̃j can be obtained by:

qj = Φ̃−1
j u (4.7)

4.3.1 Nonlinear normal modes

By substituting Equation (4.6) into Equation (4.1), the nonlinear normal modes of
the model become the eigensolutions to Equation (4.8). Distinct from the linear
modal analysis, Equation (4.8) is a nonlinear problem and its eigensolutions depend
on amplitude; moreover, they are solved by iterative numerical methods.

(−ω̃2
jM + K)(qjΦ̃j) + f̃(qjΦ̃j) = 0 (4.8)

Kryloff and Bogoliubov method is a method used in non-linear oscillation theory
to study oscillatory processes. It is based on an averaging principle, i.e., the exact
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differential equation of the motion is replaced by an averaged equation.[W.D. 1973]
The principal approach of the method is to replace the nonlinear differential equation
with a equivalent linear equation, for which the exact analytical formula for the
solution is known [Caughey 1962, Setio 1992].

For the nonlinear second order differential equation of motion of the non-
conservative nonlinear system with nonlinear function f̃(qjΦ̃j), the equivalent linear
equation is:

(−ω̃2
jM + K)(qjΦ̃j) + (ω̃jD̃ + K̃)(qjΦ̃j) = 0 (4.9)

where D̃ and K̃ are respectively the equivalent damping matrix and the equivalent
stiffness matrix, characterizing the nonlinear effect of f̃(qjΦ̃j). These two matrices
are determined by minimizing the difference ε between the nonlinear system and
the equivalent linear system for every qj :

ε(qj) =
[
(−ω̃2

jM + K)(qjΦ̃j) + (iω̃jD̃ + K̃)(qjΦ̃j)
]
−
[
(−ω̃2

jM + K)(qjΦ̃j) + f̃(qjΦ̃j)
]

(4.10)

Given that the nonlinear restoring force f̃(qjΦ̃j) has been integrated in the motion
equation. Both the natural frequencies ω̃j and modal shapes Φ̃j are of a nonlinear
nature and depend on the modal amplitude qj . For the sake of simplicity, this
dependence on qj has not been denoted herein nor in the following discussion.

The NNMs to Equation (4.1) are solved by minimizing the residue function ε

according to the steps outlined below. The unknowns of this equation are: (λ̃j ,
Φ̃j), where λ̃j = ω̃2

j . The linear modes (λj , Φj) are set as initial conditions for
the nonlinear problem corresponding to q0

j , where λj = ω2
j . The nonlinear normal

modes of iteration k (λ̃kj , Φ̃k
j ) corresponding to qkj are set as initial conditions in

order to calculate (λ̃k+1
j , Φ̃k+1

j ) of the next iteration qk+1
j .

Assuming the model dimension to be of size N , then N + 1 unknowns are thus
involved in the numerical approach to solve the nonlinear problem: 1 eigenvalue
and N eigenvector components. A normalization condition should be imposed in
this case to solve the problem. The normalization step can be conducted by either
assigning 1 to a nonlinear eigenvector component, or normalizing the eigenvector
with respect to the mass matrix. The normalization condition relative to the mass
matrix is given by:

(Φ̃i)
TMΦ̃i = 1

It should be noted that the orthogonality relation is not satisfied for nonlinear modal
shapes as a result of their dependence on modal amplitude:

(Φ̃i)
TMΦ̃j 6= 0 (i 6= j)

Special attention must be paid when normalizing the nonlinear eigenvector by
setting a nonlinear eigenvector component at 1. For example, if the chosen compo-
nent is not as highly sensitive to the modal amplitude as the other components,
then small perturbations on the modal amplitude may lead to large variations in
other eigenvector components. The solutions can thus diverge very quickly, and the
incremental step used in Newton-Raphson iterations should be very small.
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4.3.2 Nonlinear modal parameters

The nonlinear perturbation effect has been integrated into the nonlinear natural
frequency and nonlinear modes, thus resulting in a nonlinear stiffness matrix:

λ̃j = (Φ̃j)
T K̃Φ̃j (4.11)

where
(Φ̃j)

T K̃Φ̃jqj = (Φ̃j)
TKΦ̃jqj + (Φ̃j)

T f̃(qjΦ̃j) (4.12)

The nonlinear modal mass is given by:

µ̃j = (Φ̃j)
TMΦ̃j (4.13)

Assuming that proportional damping D is considered for the system under consid-
eration, the nonlinear modal damping is given by:

d̃j = (Φ̃j)
TDΦ̃j (4.14)

and the nonlinear modal damping factor is given by:

ξ̃j =
1

2

(Φ̃j)
TDΦ̃j

λ̃j
(4.15)

Once the nonlinear normal modes Φ̃j have been derived, they may be written
as a linear combination of Nl linear modes. Instead of conserving the information
about all components in the nonlinear mode vector, only Nl modal participation
coefficients are stocked.

Φ̃j =

Nl∑
k=1

β̃jkΦk (4.16)

where β̃jk denotes the participation of linear normal mode Φk in the nonlinear
mode j; also the normalization step is performed by exerting:

β̃jj = 1, (k = j)

The participation coefficient of the linear normal mode-k in the nonlinear normal
mode-j is expressed by:

β̃jk = (Φk)
TMΦ̃j (j 6= k) (4.17)

The impacts of higher-order linear normal modes on this nonlinear normal mode
are thus being neglected when using this representation.

According to the normalization condition, the nonlinear modal mass equals 1.
Moreover, as q approaches 0, the nonlinear effort converges to 0 and nonlinear mode
shapes Φ̃j converge to the linear normal mode shapes Φj . Consequently, β̃jk turns
out to be 0 for all k 6= j and 1 for k = j.

We propose conserving the participation coefficients β̃jk and nonlinear eigen-
value λ̃j as a function of modal amplitude |qj |. ω̃j and β̃jk are then interpolated
with respect to modal amplitude |qj |. The interpolation models are subsequently
used to calculate the forced responses in the following section.
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4.3.3 Modal synthesis of forced responses

When the modes are slightly coupled, the nonlinear forced responses can be approx-
imated from a superposition of the forced responses associated with single nonlinear
normal mode. To obtain the forced responses of a single nonlinear normal mode,
found by multiplying Equation (4.1) by (Φ̃j)

T according to Ritz’s approximation
method, the governing equation of the model subjected to harmonic excitations is
as follows:

(Φ̃j)
T
(
−ω2M + iD + K̃

)
Φ̃jqj = (Φ̃j)

TF (4.18)

The modal amplitude can be expressed as:

qj =
f̃j(|qj |)

−ω2µ̃j(|qj |) + id̃j(|qj |) + ω̃2
j (|qj |)

(4.19)

where
f̃j = (Φ̃j)

TF (4.20)

Both space and time complexity of nonlinear problems render nonlinear system
difficult to be solved. Herein we search for a simple and efficient method to evaluate
slightly nonlinear systems, in which complex nonlinear phenomena such as internal
resonances are not concerned. The coordinates of forced responses u are approx-
imated by the a superposition of forced responses uj corresponding to the single
nonlinear mode-j:

u ≈
Nr∑
j=1

uj ≈
Nr∑
j=1

qjΦ̃j (4.21)

In this approach, the coupling between nonlinear modes is neglected.
The modal parameters, i.e. mode shapes, natural frequencies and damping

ratios, can be deduced based on the reduced nonlinear normal modes and then
interpolated as a function of their corresponding modal amplitudes. Analyzing
these parameters yields a nonlinear modal overview, which is very useful to evaluate
the dynamic performance of the system or to identify the modes responsible for
nonlinear phenomena. Furthermore, by introducing these modal parameters, forced
responses can then be computed by iterative numerical methods.

4.4 Reduced nonlinear modal synthesis

The above analysis has been based on the full FE model containing all N DOFs.
Both the determination of nonlinear normal modes in Section 4.3.1 and the forced
responses in Section 4.3.3 pertain to iterative procedures. If fewer variables were
involved in the iterations, then the numerical computation process would be accel-
erated, thus leading to a significant savings in computational resources.
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Transformation matrices, such as those with a reduced basis in the linear mode
synthesis (LMS) theory, are employed herein to project physical coordinates onto the
generalized modal coordinates in Equation (4.1) prior to the calculation of nonlinear
modes. The single nonlinear modal analysis approach described in Section 4.3.1 is
used according to the superposition of the single nonlinear normal mode responses,
as indicated in Section 4.3.3. Lastly, the physical coordinates of the forced responses
are obtained by using the mode shapes.

The nodes have been partitioned into both the master DOFs and the slave DOFs
to facilitate the numerical protocol in u, M, K, D and F. Master DOFs are those on
the interfaces containing nonlinearities that are conserved as physical DOFs, while
slave DOFs are those in the model that would be projected onto the modal space.
The numbers of master DOFs and slave DOFs are respectively denoted NJ and NS.

In the following analysis, an initial reduction is carried out by truncating in-
ternal modes, referred to as Reduced Nonlinear Modal Synthesis based on Con-
straint modes and Internal modes (RNLMS-CI). A second reduction is applied on
the boundary modes, called Reduced Nonlinear Modal Synthesis based on Branch
modes and Internal modes (RNLMS-BI).

The RNLMS-CI method entails selecting the primary internal modes and all
constraint modes: the physical displacements of slave DOFs are expressed as the
addition of a static constraint modes matrix (ΨSJ) multiplied by the physical co-
ordinates of master DOFs (uJ), plus a reduced fixed interface modes matrix (ΦII)
multiplied by the modal coordinates of slave DOFs (qI). The selected fixed inter-
face mode number is denoted NI. In applying the reduced basis (TCI) to transform
physical coordinates into modal coordinates, we have:

u =

[
uJ

uI

]
=
[

TC TF

] [ uJ

qI

]
(4.22)

where

TCI =
[

TC TF

]
TC =

[
IJJ

ΨSJ

]
TI =

[
0

ΦII

]
ΨSJ = −K−1

SS KSJ

The fixed interface modes matrix ΦII is formed by eigenvectors ΦIj to the fol-
lowing equation:

(−ω2
IjMSS + KSS)ΦIj = 0 (4.23)

The above reduction basis serves to reduce internal DOFs, while boundary DOFs
remain the same. Boundary DOFs can also be reduced by using a branch mode
analysis described in Chapter 1: whereby branch modes are introduced to condense
boundary modes on nonlinear interfaces. The master DOFs involving nonlinearities
are thus also projected onto the modal space. The selected branch mode number is
denoted NB. Branch modes matrix XB is formed by eigenvectors XBj to Equation
(4.24):

(−ω2
BjMB + K̃B)XBj = 0 (4.24)
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where

MB = (ΨB)TMΨB, KB = (ΨB)TKΨB, ΨB =

[
IJJ

ΨSJ

]
The transformation matrix TBF is applied as follows:

u =

[
uJ

uI

]
=
[

TB TI

] [ qB

qI

]
(4.25)

where

TBI =
[

TB TI

]
TB =

[
XB

ΨSJXB

]
In the following analysis, the two transformation matrices TCF and TBF are

denoted Tr since a reduced basis is associated with both of them. Both [qC; qI] and
[qB; qI] are denoted qr. The reduced motion equation is expressed as:

(−ω̃2
r Mr + iDr + Kr)qr + (Tr)

T f̃(Trqr) = 0 (4.26)

where the reduced mass matrix, damping matrix and stiffness matrix are:

Mr = (Tr)
TMTr, Dr = (Tr)

TDTr, Kr = (Tr)
TKTr

By applying Ritz’s approximation based on a single nonlinear mode approach,
the modal coordinates of forced responses are expressed by the superposition of the
first Nr reduced nonlinear modes:

qr ≈
Nr∑
j=1

qrj ≈
Nr∑
j=1

qjΦ̃rj (4.27)

In this way, we’ve introduced the reduced nonlinear normal modes (λ̃rj, Φ̃rj),
which are calculated using the same procedure as described in Section 4.3.1. The
modal coordinates of forced responses are derived by the same rule presented in
Section 4.3.3. The reduced nonlinear mode shapes Φr can be separated into two
parts: ΦJ

rj and ΦS
rJ.

Φ̃rj =

[
ΦJ

rj

ΦS
rj

]
Analyzing the components in ΦJ

rj allows studying the contributions of linear con-
straint modes or linear branch modes in the nonlinear mode -j; moreover, evaluating
the components in ΦS

rj yields the contributions of internal modes in the nonlinear
mode -j. It should be observed that even though the nonlinearities are only located
on the interface, the components representing fixed interface mode contributions also
vary with qj . This finding can be explained by the way in which the reduced basis
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has been integrated into the nonlinear problem: since ΨSJ in RNLMS-CI or ΨSJXB

in RNLMS-BI is nonzero in the reduced basis, nonlinearity would be transmitted to
the last NI components in ΦS

rj through the coupling term within the reduced mass
matrix: Mr.

Let’s note that only NJ + NI variables are involved in the iterations when
deducing the eigenvectors of the reduced nonlinear problem with RNLMS-CI,
instead of computing NJ + NS variables using the NLMA method. Furthermore,
NB +NI variables are part of the iterative process when employing the RNLMS-BI,
rather than introducing NJ + NS variables into the nonlinear problem by applying
the RNLMS-CI method. Let’s also note that when NB = NJ, the RNLMS-BI
method is equivalent to the RNLMS-CI method. From the full model described in
Section 4.3, when NI = NS, the RNLMS-CI method is equivalent to the NLMA
method applied on the full model.

The advantage of this approach is that nonlinear normal modes can be com-
puted once and for all types of external loading. They are independent of imposed
loads and that frequency response can be computed with the modal parameters
defined with nonlinear normal modes. When calculating frequency response with
this method, the inversion of the matrices is a trivial algebraic inversion instead of
complex inversion of matrix. This leads to a significant reduction in computation
time.

The algorithm for calculating forced responses of the nonlinear model by the
proposed reduced nonlinear modal synthesis approach is outlined as follows:

Step 1: Construct the Finite Element (FE) model of the nonlinear system with
the help of Structural Dynamics Toolbox [Balmès 2009];

Mü + Du̇ + Ku + f̃(u) = F cos(ωt+ ϕ)

Step 2: Perform reductions on the full-order FE model, e.g. Craig & Bampton
reduction technique, Branch mode analysis 1 or another reduction technique;

u = Trqr

Step 3: Compute the reduced nonlinear modes (λ̃rj, Φ̃rj) of the reduced model
by implementing Kryloff and Bogoliubov’s equivalent linearization method with the
Matlab solver;

(−ω̃2
rjMr + iDr + Kr)qjΦ̃rj + (Tr)

T f̃(TrqjΦ̃rj) = 0

Step 4: Extract nonlinear modal parameters µ̃rj , d̃rj , ω̃rj , and f̃rj from the
reduced nonlinear modes;

µ̃rj = (Φ̃rj)
TMrΦ̃rj d̃rj = (Φ̃rj)

TDrΦ̃rj f̃rj = (Φ̃rj)
TF

Step 5: Interpolate the extracted modal parameters as a function of modal
amplitude;
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Step 6: Compute the generalized modal coordinates qrj of the steady-state re-
sponse of each nonlinear mode by using the interpolated functions in Step 5 along
with the Matlab solver.

qrj = qjΦ̃rj qj =
f̃j(|qj |)

−ω2µ̃j(|qj |) + id̃j(|qj |) + ω̃2
j (|qj |)

Step 7: Project the generalized modal coordinates of steady-state responses of
the reduced model onto the physical space with the reduced basis used in Step 2.

uj = Trqrj

Step 8: Superimpose the physical coordinates of steady-state responses of the
selected nonlinear modes; the steady-state responses of the nonlinear model are then
obtained.

u ≈
Nr∑
j=1

uj

4.5 Case study of an assembled structure

For a description and validation of the proposed strategy, the same model used in
Section 3.2 has been investigated, while the rubber layer padding on the interfaces
are nonlinear. We remind readers the model contains two Kirchhoff plates and
one rubber layer interface, as shown in Figure 4.2. Plate 1 on the left side is
denoted by S1: its length a1 is 0.66 m, the width b1 = 0.6 m and the thickness
e is 0.002 m; Plate 2 on the right is denoted by S2: its length a2 is 0.44 m, the
width b2 = 0.6 m and thickness e = 0.002 m; The rubber layer interface is denoted
by J : the rubber material is padded on both the top and bottom of plates so as
to ensure the connections between S1 and S2, with a thickness (θ) of 0.002 m and
a width (l) of 0.003 m. The thickness and width variation of the rubber layer acts
upon the change in its stiffness value. Figure 4.3 shows the details of this rubber
layer model.

The model is excited with a tire balance type loading [Agnieszka 2005]: F =

mω2R cosωt at a frequency ω, with m = 6 g, and R = 4 cm. The excitation
is located at x = 0.44 m and y = 0.2 m, hence lying on S1. The investigated
excitation frequency band is [3, 50] Hz. Structural hysteresis damping has been
integrated into the model, with a damping ratio of 0.02 on the nonlinear interface
J , and 0.01 on the plates S1 and S2.

The finite element (FE) model has been built with a Structural Dynamics Tool-
box (SDTools) [Balmès 2009], as shown in Figure 4.4. To compute the forced re-
sponses of the FE model, Runge-Kutta’s reference time integration method uses a
considerable amount of time. As a compromise between the accuracy of the reduced
model and the computation time, 4 elements per wavelength were utilized for the
mesh size. The entire model contains 72 DOFs and 15 elements, of which 9 are in
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Figure 4.2: Assembled system com-
posed of Kirchoff plates and nonlinear
rubber layer interface

Figure 4.3: Rubber layer model

Figure 4.4: Assembled system composed of Kirchoff plates and nonlinear rubber
layer interface

plate 1 on the left (i.e. S1 : a = 0.66 m, b = 0.6 m, e = 0.002 m), 6 in plate 2 on
the right (i.e. S2 : a = 0.44 m, b = 0.6 m, e = 0.002 m), and 4 elements in the
joints on the interface (J : e = 0.002 m, l = 0.003 m).

Nonlinearities are continuously distributed along the interface. The nonlinear
restoring forces are assumed to lie in the translation direction of z. Cubic nonlinear-
ity is one of the most popular means to describe the nonlinear effect on the dynamic
behavior of the system, as revealed in many works [Sangriyadi 1990, Nayfeh 1992,
Jiang 2005]. The nonlinearities included herein are Duffing oscillators in the form of
a cubic nonlinear restoring force that depends on the relative displacement between
nodes on the interface. The cubic nonlinearity ratio is denoted α, and the nonlinear
restoring force is given by:

f̃(u) = α∆u3 (4.28)
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It should be mentioned that other nonlinear forces having analytical expressions
can also be investigated by using the method presented in Chapter 4.3, herein
Duffing oscillator is taken as example. The geometry and material properties are the
same as the description for assembled plates in Table 3.2 in Chapter 3, except that
a nonlinear coefficient of 0.9 is added to describe the nonlinear behavior of interfaces.

4.5.1 Truncation effects of higher-order nonlinear normal modes

By applying this nonlinear modal analysis on the full FE model, steady-state re-
sponses of the model within the targeted frequency band (i.e. [3, 50] Hz) can be
compared to those output by the classical Runge-Kutta method. Given their spa-
tial limitations, responses in the z direction of the excitation point will be analyzed
herein. Moreover, stable responses are examined since instable branches are not
available using time integration method.

A sensitivity analysis of the forced responses to the nonlinear mode reduction co-
efficient has been performed here for rc = 1, rc = 1.5, rc = 2 and rc = 4 (Figure 4.5).
That’s to say, the nonlinear normal modes of the built-up model are retained up to
rc ∗ 100 Hz. The forced response curves corresponding to the excitation frequency
sweeping across the targeted frequency band from 3 Hz to 50 Hz are marked in
solid lines, while those as the excitation frequency sweeps across the targeted band
from 50 down to 3 Hz in the reverse direction are plotted in dotted lines. It can
be observed that rc = 2 appears to suffice for the study of dynamic behavior up to
50 Hz, since the response curves obtained by the NLMA method with rc = 2 show
only small differences with respect to the response curves given by rc = 4.

A reduction coefficient of rc = 2 for nonlinear normal modes has thus been
assigned to construct the forced responses. Figure 4.6 compares the response curves
obtained by superimposing the steady-state responses of the first 18 single nonlinear
modes with those obtained by the classical Runge-Kutta’s method. Two curves were
generated for each method: as the excitation frequency sweeps across the targeted
frequency band from 3 Hz up to 50 Hz, and as this excitation frequency sweeps across
the targeted band from 50 down to 3 Hz in the opposite direction. The amplitude of
steady-state responses is plotted on the upper subfigure, and the phase is indicated
on the lower subfigure. These results demonstrate the effectiveness and accuracy of
the nonlinear modal analysis method.

4.5.2 Truncation effects of internal modes and branch modes

Before applying the reduced nonlinear modal synthesis to the nonlinear model, a
convergence study of forced responses to the reduction coefficient corresponding
to component modes has been conducted on the linear model with LMS. Setting
rc = 2 as the reduction coefficient for all types of component modes, i.e. constraint
modes, branch modes and internal modes, a quality analysis of the reduced model
is evaluated as follows: The normal mode frequencies for the free vibration-reduced
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Figure 4.5: Comparison of the forced responses obtained by NLMA method applied
on the full FE model, corresponding to different rc. rc corresponds to the reduction
coefficient on nonlinear modes. Results corresponding to rc = 1, rc = 1.5, rc = 2

and rc = 4 are compared herein.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4
x 10

−3

Frequency (Hz)

P
h

y
s

ic
a

l 
D

is
p

la
e

c
m

e
n

t 
(m

)

Excitation DDL32

 

 

NLMA Raise NLMA Decrease Runge−Kutta Raise Runge−Kutta Decrease

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

Frequency (Hz)

P
h

a
s

e

Figure 4.6: Comparison of the forced responses obtained by nonlinear modal analysis
corresponding to rc = 2 and those obtained by RungeKutta method



100 Chapter 4. Extensions of nonlinear modal synthesis

Table 4.1: Comparison of natural frequency of the full FE and reduced model

Mode number 1 2 3 4 5 6 7 8 9

NLMA (Hz) 3.97 12.91 15.06 24.42 26.73 31.50 34.04 43.36 46.24

RNLMS-CI (Hz) 3.97 12.91 15.06 24.43 26.75 31.59 34.14 43.47 46.45

RNLMS-BI (Hz) 3.97 12.91 15.06 24.44 26.76 31.64 34.16 43.64 46.51

model are compared with those of the full FE model. The natural frequency error
is negligible up to 50 Hz, as displayed in Table 4.1. The modal assurance criterion
(MAC) is also calculated in order to compare the reduced mode shapes and the
exact mode shapes, with the MAC value being greater than 0.95 up to 50 Hz.

Based on these simulation results with LMS, a reduced nonlinear modal
synthesis has been performed with rc = 2 for all mode types involved in the
transformation matrix Tr used in the following analysis. Note that a higher rc
value may be selected in cases when a more accurate reduced model is needed. The
reduction effect of internal modes and branch modes on the forced responses will
be presented in the next section.

By using the RNLMS-CI method, both the constraint modes and internal modes
are included in the transformation matrix. The reduction step is performed by con-
densing internal DOFs. Figure 4.7 depicts the forced responses at the excitation
point corresponding to various reduction coefficients: this figure 4.7 indicates good
convergence of these responses around resonant frequencies when the selected inter-
nal mode number varies between 1 and 6, which has also revealed a reduction effect
of the internal modes. It appears that rc = 2 suffices for studying the dynamic
performance of a nonlinear system up to 50 Hz. No higher-order internal modes
need to be selected since the forced responses remain the same when more internal
modes are conserved with a reduction coefficient greater than 2.

By employing the reduced nonlinear modal synthesis with constraint modes and
internal modes (RNLMS-CI), the forced responses at four points of the model are
calculated and compared to results obtained by the Runge-Kutta’s method, i.e.:
an excitation point in Figure 4.8, a randomly selected point on J in Figure 4.9, a
randomly selected point on S1 in Figure 4.10, and a randomly selected point on
S2 in Figure 4.11. All these figures show response curves that closely match the
reference method.

A further reduction is performed on the boundary DOFs using the reduced basis
combined with branch modes and internal modes in the nonlinear modal synthe-
sis (RNLMS-BI). To study the truncation effect of branch modes on the forced
responses, stationary responses at the excitation point are plotted in Figure 4.12.
The reduced model investigated herein corresponds to rc = 1, rc = 2, rc = 4, no
reduction for branch modes and rc = 2 for internal modes. When observing the
response curves around 27 Hz, it appears that a reduced model with rc = 4 for
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Figure 4.7: Comparison of the forced responses obtained by RNLMS-CI method
corresponding to different rc. rc corresponds to the reduction coefficient on internal
modes. Results corresponding to rc = 1, rc = 2, rc = 4 and rc = 6 are shown herein
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Figure 4.8: Comparison of the forced responses on excitation point obtained by
Constraint NLMS method with rc = 2 and by RungeKutta method
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Figure 4.9: Comparison of the forced responses on an arbitrary point of J obtained
by Constraint NLMS method with rc = 2 and by RungeKutta method
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Figure 4.10: Comparison of the forced responses on an arbitrary point of S1 obtained
by Constraint NLMS method with rc = 2 and by RungeKutta method
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Figure 4.11: Comparison of the forced responses on an arbitrary point of S2 obtained
by Constraint NLMS method with rc = 2 and by RungeKutta method

branch modes provides sufficient accuracy to study the stationary responses.
The truncation effect of internal modes on the forced responses of the reduced

model has also been analyzed when setting rc = 4 for branch modes. Stationary
responses at the excitation point corresponding to rc = 2, rc = 4 and rc = 6 for
internal modes are compared in Figure 4.13. It appears that the reduced model
with rc = 2 for internal modes provides adequate accuracy to study the stationary
responses.

The forced responses are observed to be more sensitive to the selected branch
mode number than to the internal mode number, which can be explained by the
fact that branch modes are associated with the nonlinear interface behavior.

The amplitude and phase of physical displacement in the z direction for the 4
points obtained by RNLMS-BI with rc = 4 for branch modes and rc = 2 for internal
modes are compared to those obtained using Runge-Kutta’s reference method: the
excitation point (Figure 4.14), a randomly selected point on J (Figure 4.15), a
randomly selected point on S1 (Figure 4.16), and a randomly selected point on
S2 (Figure 4.17). These figures all suggest fairly good match between response
curves obtained with the RNLMS-BI method and the temporal integration reference
method, which proves the efficiency of the RNLMS-BI method.

Whenever the amplitude reaches a peak on the upper subfigure, there is violent
phase changes occur on the lower subfigure. In another finding, the model shows an
obvious nonlinear performance when resonance is encountered, i.e. around 27 Hz,
36 Hz and 48 Hz. The response curve inflection leads to multivalued amplitudes
and hence a "jump" phenomenon, which is actually a consequence of nonlinearities
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Figure 4.12: Comparison of the forced responses obtained by RNLMS-BI method
corresponding to different rc. rc corresponds to the reduction coefficient on branch
modes. Results corresponding to rc = 1, rc = 2, rc = 4 and no truncation are shown
herein
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Figure 4.13: Comparison of the forced responses obtained by RNLMS-BI method
corresponding to different rc. rc corresponds to the reduction coefficient on internal
modes. Results corresponding to rc = 2, rc = 4, and rc = 6 are shown herein
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Figure 4.14: Comparison of the forced responses on excitation point obtained by
Branch NLMS method with rc = 2 for internal modes and with rc = 2 for branch
modes and by RungeKutta method
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Figure 4.15: Comparison of the forced responses on an arbitrary point of J obtained
by Branch NLMS method with rc = 2 for internal modes and with rc = 2 for branch
modes and by RungeKutta method
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Figure 4.16: Comparison of the forced responses on an arbitrary point of S1 obtained
by Branch NLMS method with rc = 2 for internal modes and with rc = 2 for branch
modes and by RungeKutta method
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Figure 4.17: Comparison of the forced responses on an arbitrary point of S2 obtained
by Branch NLMS method with rc = 2 for internal modes and with rc = 2 for branch
modes and by RungeKutta method
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Figure 4.18: Forced responses of the nine first nonlinear modes

Figure 4.19: mode 1 around 6 Hz Figure 4.20: mode 2 around 6 Hz

located along the joints.

4.5.3 Analysis of nonlinear phenomena from a modal overview

Figure 4.18 displays the forced responses of the first 9 nonlinear modes. It is ob-
served that mode 1 around 4 Hz and mode 2 around 13 Hz are nearly linear, while
mode 7 around 36 Hz and mode 9 around 48 Hz show a relatively strong nonlinear
performance.

By observing the linear modes shapes of the system (Figures 4.19, 4.20, 4.21,
4.22), the deformations on the nonlinear interface are not evident for mode 1 and 2,
while become large when passing to mode 7 and 9. Since nonlinearities are located
on the interface, the amplitude of interface reveals the nonlinear influence on the
system’s dynamic performance. The color defined herein is proportional to motion
norm.

Furthermore, analyzing nonlinear modes provides a modal overview of the dy-
namic performance of the nonlinear system. Figure 4.23 reveals how nonlinear
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Figure 4.21: mode 7 around 6 Hz Figure 4.22: mode 9 around 46 Hz
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Figure 4.23: Nonlinear normal mode frequency variation in function of the modal
amplitude for nonlinear modes-1, 2, 7, 9

natural frequency varies with its modal amplitude. It is seen that nonlinear natu-
ral frequencies all stem from the natural frequencies of the linear model, without a
Duffing oscillator, and ultimately approximate the model’s linear natural frequen-
cies when the nodes on the interface connecting each substructures are clamped to
each other.

The variation in modal damping ratios as a function of modal amplitude is also
plotted in Figure 4.24. This variation tends to be nearly reciprocal to that of non-
linear natural frequencies, which can be explained by the mathematical expression
of the modal damping ratio in Equation (4.15).

The participation of linear normal modes in reduced nonlinear modes 1, 2, 7
and 8 (β̃k1, β̃k2, β̃k7, β̃k8 where k = 1, ..., 18) is captured in Figure 4.25. The
participation of the corresponding linear mode in the nonlinear mode always equals
1, which is in agreement with the assumption that β̃r

jj = 1.
Figures 4.23, 4.24 and 4.25 explain the dynamic performance shown in Fig-
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Figure 4.24: Damping ratio variation in function of the modal amplitude for non-
linear modes-1, 2, 7, 9
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Figure 4.26: Variation of modal components versus their corresponding modal ampli-
tude for nonlinear modes-1, 2, 7, 9 obtained with reduced constraint NLMS strategy

ure 4.6, i.e. mode 1 around 4 Hz and mode 2 around 13 Hz are nearly linear, while
mode 7 around 36 Hz and mode 9 around 48 Hz exhibit a relatively strong nonlin-
ear behavior. The natural frequency, damping factor and linear mode participation
parameters do not vary with modal amplitude for modes 1 and 2, while those for
modes 7 and 8 vary substantially.

Furthermore, with a transformation matrix composed of constraint modes and
fixed interface modes, another modal overview can be derived on the nonlinear
behavior. Similar to the above analysis, modes 1, 2, 7 and 9 have been investigated.
Figure 4.26 shows the variation trends of components in the reduced nonlinear
modes vs. the modal amplitude. These components pertain to internal modes and
are marked by red lines, while those representing constraint modes are marked in
blue in Figure 4.26. Nonlinear modes vary with constraint mode components, yet
they do not vary considerably with internal modes components. It can be con-
cluded that constraint modes are responsible for the model’s nonlinear performance.

To summarize, the reduced nonlinear modal synthesis methods are proven to be
accurate and efficient in analyzing assembled systems with nonlinearities continu-
ously located at interfaces between substructures. For this assembled system com-
posed of Kirchhoff plates and a nonlinear rubber layer, 50% of DOFs are truncated
by applying the RNLMS-CI method and, furthermore, 67% of DOFs are truncated
by applying the RNLMS-BI method, as indicated in Table 4.2. Simulations have
been conducted on a server containing 32 Xeon (R) processors running at 2.9 GHz.
Considering the 10, 000 linearly-spaced modal amplitudes from 0 to 1, the CPU
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time consumed in computing one nonlinear mode is: 6, 394 s when employing the
NLMA method on the full FE model, 4, 098 s when applying reduced nonlinear
modal synthesis with constraint modes and internal modes on the reduced model,
and 2, 636 s when using reduced nonlinear modal synthesis with branch modes and
internal modes on the reduced model.

All reduction techniques serve to reduce computation time, with the branch
mode analysis providing even more savings since branch modes are also truncated
compared to Craig & Bampton method. This finding may be especially valuable for
analyzing large assembled systems, since DOFs on the interfaces represent the major-
ity of DOFs and demonstrates considerable computation time savings whenever the
proposed RNLMS approaches are applied to study large assembled systems. More-
over, there is no need to recompute the nonlinear modes for different excitations, and
forced response of the system can be calculated by using the interpolated models of
modal parameters that characterize the system behavior. Both analytical and nu-
merical synthesis methods of forced responses are presented. Jump phenomena are
observed when the nonlinear systems are concerned with Duffing nonlinearities, and
unstable regions are thus identified by using modal synthesis method by sweeping
across the interested frequency range in two directions.

Table 4.2: Comparison of retained modes number and CPU time

Method Branch
Modes number

S1 Internal
Modes number

S2 Internal
Modes number

Total
modes number CPU time(s)

full FE 24 30 18 72 6 394
RNLMS-CI 24 7 5 36 4 098
RNLMS-CB 10 7 5 24 2 636
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5.1 Friction models

In this section, we will present different phenomenological and rheological models,
which can be used to predict friction phenomena that are linked with pertinent
hypotheses or measurements. Various rheological models are discussed, including
static model depending solely on the velocity, dynamic models introducing an extra
state to describe the average deflection of the asperities and physics-based models.
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5.1.1 Static friction models

Coulomb, viscous and Stribeck model
The most ubiquitous model in the modeling and simulation literature is Coulomb

friction. [Andersson 2006] The Coulomb, the viscous and the Stribeck model form
the basic elements of friction. The friction force including all these three effects
is [Geffen 2009]:

Ff (v) = Fc(v) + Fv(v) + Fs(v) (5.1)

The friction force given by the Coulomb model is Fc = µFnsign(v), with Fn the
normal force, µ the friction coefficient, and v the relative velocity of the moving
object.

The viscous friction force is linear with respect to the velocity: Fv(v) = σvv,
with σv the viscous friction coefficient.

The Stribeck friction describes the negatively sloped characteristics taking place
at low velocities, i.e. the friction decreases with increasing velocity for a certain
velocity regime. It is realized by varying the friction coefficient to interpret the
start-up of lubrication mechanism. Herein it is kept in the general form Fs(v) as a
describing function of velocity.

When the velocity crosses v = 0 line, the model comes across numerical
instabilities. A switch model [Drincic 2012] can be applied to enhance the friction
model with the elastic part.

The Switching model
The Switch model is a technique that smooth out the discontinuous dynamics

around the discontinuity v = 0. It consists of two separate models for the stiction
phase and for the sliding phase.

For the stiction phase, it is simply modeled as a spring element, with σ0 the
micro stiffness and x the displacement:

Ff (x) = σ0x (5.2)

For the sliding phase, it is modeled by the Coulomb viscous friction and the
Stribeck curve with frictional lag. This model attempts to capture the dynamics of
friction by introducing a time delay, which only affects the friction in sliding phase
and oversimplifies it. The expression is given by:

Ff (ẋ, t) =

Fc + Fv|ẋ|+ Fs,a + Fs
1

1 +
(
ẋ(t−τL)
ẋs

)2

 sign(ẋ)

Fs = (Fs,∞ − Fs,a)
t2

t2 + γ
)

(5.3)

where Fs is the magnitude of the Stribeck friction, Fs,a is the magnitude of the
Stribeck friction at the end of the previous sliding period, Fs,∞ the magnitude of the
Stribeck friction after a long time at rest (with a slow application of force), ẋs is the
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characteristic velocity of the Stribeck friction, τL is the time constant of frictional
memory, γ is the temporal parameter of the rising static friction, and t2 is the time
at zero velocity.

However, when a tangential load is applied to the contact, elastic-plastic
deformations and slip occur over the contact patch, which affects the frictional
behavior. In these cases a friction coefficient value needs to be determined. The
static models do not describe friction accurately enough for some applications that
operate near zero velocity. Even with the switch model, the transition between the
phases is not well described. In these situations, dynamic models requiring a more
complex model with more parameters are necessary.

5.1.2 Dynamic friction models

Among these dynamic models, the Dahl model, the LuGre model, the Leu-
ven integrated model and generalized Maxwell slip model are presented
herein [Piatkowski 2014, Al-Bender 2010].

The Dahl model
In the Dahl model, the friction is a function of both velocity and displacement.

The friction behavior is analyzed by analogy the stress-strain property for materials.
When small displacements occur, the force is modeled by a spring-like elastic mate-
rial behavior; while when displacements are larger, a plastic deformation resulting
in a permanent displacement is taken into account. An empirical expression is used
for this model:

dFf (x)

dx
= σ

∣∣∣∣1− Ff
Fc

sign(ẋ)

∣∣∣∣n sign(1−
Ff
Fc

sign(ẋ)

)
(5.4)

where σ is the stiffness parameter at equilibrium point Ff = 0 N , n is a material
dependent parameter, i.e., n is chosen between 0 and 1 for brittle materials and
superior to 1 for more ductile like materials.

Dahl’s model is able to model pre-displacement and hysteresis in a dynamic
model, but it is unable to capture many other phenomena like the Stribeck effect
and the ability to predict stick-slip motion.

The LuGre model
The LuGre model is based on Dahl’s model, but else is able to describe both

pre-sliding and sliding regime and the transition between them. A state variable
z = Ff/σ0 is involved in LuGre model to represent the internal friction mechanism.
Besides, the constant Fc is replaced with a velocity-dependent function g(v) and
two more terms are added: an additional damping σ1 associated with micro
displacement and a memoryless velocity-dependent term f(v) associated with
macro damping.
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Ff = σ0z + σ1ż + σ2v

ż = v

(
1− α(v, z)sign(v)

z

zss(v)

) (5.5)

The modified LuGre model
Although the LuGre model is able to capture almost all known friction phe-

nomena it still lacks the ability to describe hysteresis with nonlocal memory and
undesired position drift occurred in simulations. These issue’s are solved in the
Leuven model, but at the cost of numerical and implementation problems. With
two modifications a discontinuity issue and the implementation problem are solved
in the modified Leuven model. LuGre model by including pre-sliding hysteresis with
nonlocal memory. This type of hysteresis occurs for non-periodic pre-sliding and is
an improvement for the model’s accuracy with respect to reality. The state variable
z represents the average deformation of the asperities of the contacting surfaces.
The friction force and state equation are stated as:

Ff = Fh(z) + σ1
dz

dt
+ σ2v

dz

dt
= v

(
1− sign

(
Fd(z)

S(v)− Fb

)
·
∣∣∣∣ Fd(z)

S(v)− Fb

∣∣∣∣n)
S(v) = sign(v)

(
Fc + (Fs − Fc) e−(|v|/vs)δ

) (5.6)

where σ1 is the micro-viscous damping coefficient, σ2 is the viscous damping
coefficient, Fh(z) is a hysteresis friction force consisting of two parts: Fb at the
beginning of a transition curve and Fd(z) the current transition curve, n is a coef-
ficient determining the transition curve shape, and S(v) is a function that models
the constant velocity behavior.

Notwithstanding, when the state variable z is reset to zero, discontinuity in the
friction force can occur. To overcome this problem, a modified Leuven model was
established by replacing the argument Fd(z)/(S(v) − Fb(z)) with Fh(z)/S(v) and
the hysteresis force function with the Maxwell slip model. The new state equation
becomes:

dz

dt
= v

(
1− sign

(
Fh(z)

S(v)

)
·
∣∣∣∣Fh(z)

S(v)

∣∣∣∣n) (5.7)

The Maxwell model
The Maxwell-slip model with N masses and N springs using discrete stick-slip

elements assumes an empirical friction coefficient and limiting friction force. The
hysteresis force is thus a superposition of N Coulomb forces. Each mass is associated
with a displacement dead band xi, below which the mass does not move, and above
which the mass moves with the same velocity as the common termination point.
Hence, ki is the minimum spring force needed to move the mass mi. Once the mass
mi begins to move, the spring force remains at ki ∗ xi for all velocities of the mass.
Hence, each mass-spring combination in the Maxwell-slip model is subjected to an
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equivalent Coulomb friction force steady state sliding property. The hysteresis force
is equal to the sum of hysteresis forces of each element.

Fh(k) =

N∑
i=1

Fi (5.8)

The Coulomb law at slip is replaced by a rate-state law: Fi = Ki(z − ζi) for
(z − ζi) < Wi/ki and Fi = sign(z − ζi)Wi otherwise.

When combining with physics of the problem and imposing sliding dynamics
onto the slip phase of the Maxwell-slip implementation of the hysteresis, the model
turns to be a Generalized Maxwell-slip friction model.

The Physics-based model
Physics-based friction models study essential aspects of interface chemistry,

mechanics and material properties, and develop a global behavior of friction from
the local physics. Simulations normally consist of a large amount of asperities to
acquire a decent representation. One of the major limitations of physics-based
friction models is the difficulty in developing a bottom-up multi-scale model for
macro-scale contacts. Although the physics-based models are capable of captur-
ing all friction-induced phenomena that are observed so far, the computational
recourses required by these models prevent its application for analyzing complex
structures and are not considered herein.

5.1.3 Masing models by the use of restoring force

Rheological models and restoring force models are the two main categories widely
used in mechanical engineering to predict those components behavior. The former
provide damping and stiffness parameters, while the latter provide a restoring force
to be introduced in the second member of the equations[Bastien 2006]. By combin-
ing these two categories together, a generalized Masing model can be developed.

The main difficulty in the representation of dry friction force resides in the cal-
culation of the tangential contact force around zero. There exist various possibilities
for the mathematical representation of the restoring force in hysteresis damping.

For hysteresis damping govern by Masing rules, one possibility is to replace
sign(v) with atan(v) in Coulomb model (see Figure 5.1), which prevents the dis-
continuity around zero:

Fc = µFnatan(v) (5.9)

Another example is shown in the work of [Gaul 2008], a generalized Coulomb
friction with contact stiffness govern by the Masing evolution rule is:

Ḟf = kT v
1

2

{
1− sgn

(
F 2
f − F 2

C

)
− sgn(vFf )

[
1 + sgn

(
F 2
f − F 2

C

)]}
(5.10)



118 Chapter 5. Structures involving dry friction

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-1

-0.5

0

0.5

1

atan(v)sign(v)

Figure 5.1: Difference of Coulomb model around zero with sign(v) and atan(v), x
axis represents the velocity, y axis represents the dry friction force

The other possibility is to model the restoring force by differential equation. In
the work of [Clavel 2001], it is modeled by an ordinary differential equation:

Ḟd(t) = −1/e ∗ |v(t)| ∗ Fd(t) + f/e ∗ v(t) (5.11)

where e and f are two unknown parameters with dimensions of distance and force,
respectively.

Moreover, inspired by Iwan type friction elements that describe contact in terms
of discrete contact points and spring elements, at least three parameters should
be provided to describe the restoring force with a mathematical smooth function.
Several requirements should be satisfied: when no relative displacement at the con-
tact node occurs, the friction force is zero; when the relative displacement tends to
infinity, the friction force tends to its maximal value fm; the slop of the curve at
the beginning is a constant; the slop of the curve when the displacement tends to
infinity is also a constant. Based on these rules, here are two mathematical models
available for the calculation of restoring force of tangential contact:

f(x) = fm

(
1− e

(
−x
ε
−x

3

α

))
(5.12)

f(x) = fm(β1 + (1− β1)e−β2x
p
), β2 ≥ 0 (5.13)

Considering that these dynamic models are in general more difficult to imple-
ment and identify, and also computationally expensive, polynomial representation
for restoring force is often adopted.

f(x) =
n∑
i=1

aix
n (5.14)

where n is the degree of the polynomial.
Moreover, the polynomial is more natural and easy to handle for the imple-

mentation in the numerical frame. Polynomial representation (5.14) is found to be



5.2. Generalized Masing model 119

quicker than the others (5.12) and (5.13). In experimental measurements, the most
general smooth function is possibly the polynomial function, with the polynomial
coefficients being determined by physical constraints.

5.2 Generalized Masing model

In order to obtain a general representation of friction phenomena in engineer-
ing, a turbomachinary blade with properly designed interfaces is taken as exam-
ple [Chatelet 2008]. Dry friction on the interface can provide displacement and
velocity dependent damping. Two forces are observed: a pressure force that is nor-
mal to the frictional interface and an in-plane restoring force that opposes transverse
displacement of the damping node. One simple model is a bilinear damper device.
When these devices are put in parallel, abundant friction phenomena can be ob-
served and this model yields a general dry friction model. The friction model can
be obtained by curve fitting based on the least squares method with experimental
data.

Various dry friction models can be extended to a generalized Masing model by
applying Masing’s rule. Polynomial is employed in representing the restoring force
in hysteresis loop, thanks to its simplicity in numerical computation aspect, and
its capability for the description of abundant phenomena. For example, stiction,
Stribeck effect, and pre-sliding displacement can all be taken into account by select-
ing properly polynomial coefficients of the polynomial.

Many mathematical models have been proposed for the description of rate in-
dependent hysteresis. Among them the Masing model seems quite appropriate,
because it allows a very convenient analysis of the behaviour along any loading
path. Masing model is originally proposed for cyclically stabilized hysteretic be-
havior [Masing 1926]. In its general form the Masing model is obtained from the
continuous limit of a discrete spring-friction model and it can be presented in two
equivalent forms based respectively on a parallel or serial model.

For constructing the Masing model, two basic components are involved: A con-
stitutive equation, which introduces the initial elastic stiffness and the universal
evolution equations, which are independent of the special mode. The universal rule
completed by the constitutive equation yields to the hysteresis loop. This is in
fact the whole spirit of the Masing model which allows the finite treatment of a
continuous spectrum of internal variables. [Fourgers 1989]

The hysteresis loop is illustrated on a cyclic strain path between xm and −xm.
The first loading starts from the virgin state x = 0, and the state evolution under
increasing strain up to xm is given by the rule of constrained translation F0(x) (see
Figure 5.2). The stiffness spectrum is obtained by its initial slope. The unload-
ing behavior with decreasing x from xm to −xm will be described in terms of the
variation of Fnl from point A, passing by point B, and attaining point C. The
unloading curve (solid lines in Figure 5.2) is deduced from the first loading curve
by an homothety of ratio 2. Again the state evolution directly follows from the rule
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Figure 5.2: lumped-parameter system with dry friction modeled by one damper

of constrained translation. While for the reloading, an entirely symmetric situation
is encountered (dashed lines in Figure 5.2), allowing the construction of the entire
hysteresis loop. The Masing’s rule for the whole hysteresis loop is described by
Equation (5.45).

fm1(x) = 2f

(
x+ xm

2

)
− fm x ∈ lower branch - 1, 2

fm2(x) = −2f

(
−x+ xm

2

)
+ fm x ∈ upper branch - 3, 4

(5.15)

The stabilized loop can be thus obtained at the first cycle. The friction-
displacement curve obtained in this way is called first loading curve. By using
this first loading curve, the harmonic components of dry friction force over one
steady-state period can be determined. This single bilinear hysteresis element is
often used to model friction damping in systems, due to the computation costs
and the simplicity in calibrating of damped model against experimental data. The
drawback of this model is that it cannot capture the full richness of the frequency
response with more complicated friction phenomena [Berger 2002].

Masing model with one bilinear element
The dry friction model presented herein is inspired by elasto-plastic bilinear

element [Argatov 2011]: the static stiffness kt, friction coefficient µd and normal
force N applied on the contact. The general lumped-parameter system is illustrated
by Figure 5.3.

The kinematic state is related to a static stiffness kt, a kinetic stiffness kd, a
kinetic coefficient µd and a certain value for the force at which slip occurs xd (the
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Figure 5.3: lumped-parameter system with dry friction modeled by one damper

threshold). The corresponding friction law reads:

f =

{
(kd + kt)x x ∈ [0, xd]

ktx+ kdxd x ∈ [xd,+∞]
(5.16)

By employing the Masing’s rule depicted in Equation (5.45), the hysteresis loop
of this bilinear model is shown in Figure 5.4.

Figure 5.4: The hysteresis loop of the bilinear model

Masing model with three bilinear elements

Before getting down to a generalized Masing model, we introduce here a transi-
tional friction model with three bilinear elements. When three macro-slip bilinear
elements are set in parallel (see Figure 5.5), the friction model reproduces friction
forces at three critical displacements. The friction law is expressed as Equation
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(5.17).

f =


(kd1 + kd2 + kd3 + kt)x x ∈ [0, xd1 ]

(kd2 + kd3 + kt)x+ kd1xd1 x ∈ [xd1 , xd2 ]

(kd3 + kt)x+ kd1xd1 + kd2xd2 x ∈ [xd2 , xd3 ]

ktx+ kd1xd1 + kd2xd2 + kd3xd3 x ∈ [xd3 ,+∞]

(5.17)

Figure 5.5: lumped-parameter system with dry friction modeled by three dampers
in parallel

Figure 5.6: The hysteresis loop of the three bilinear dampers in parallel

The first loading curve corresponding to this expression is shown in Figure 5.6.
The bilinear hysteretic element is found to act like a “soft spring". The first loading
curve given by the friction model formed by three dampers are observed to be
smoother compared to that of one damper.

Masing model with an inifity of bilinear elements
We propose to describe any type of friction element with an extended hys-

teresis model, i.e., an infinity of macro-slip dampers are set in parallel (see Fig-
ure 5.7) to model the dry friction, which comes to the generalized Maxwell model
[Al-Bender 2010]. The physics behind this model can be understood by imagining
friction as a contact scenario involving a large population of interacting asperities
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subject to such phenomenological mechanisms. Therefore, the hysteresis losses take
place as soon as the first slip occurs. The hysteresis loop obtained at contact point is
usually used to determine the nonlinear force transmitted along the contact surface
as accurately as possible.

Figure 5.7: lumped-parameter system with dry friction modeled by an infinity of
dampers in parallel

Each element contains two characterizing parameters, the damper stiffness kdn
and the threshold force fnln. These elements are assembled together in parallel to
represent the nonlinear force, which is very useful in representing nonlinear fric-
tional phenomena for forced response predictions; because it captures qualitatively
realistic physical behaviors with these lumped elements. The first dampers slip af-
ter some initial transient oscillations and, successively, other dampers slip after the
first dampers. Substantial stick-slip can be observed providing two fundamental
functionality simultaneously: frictional energy dissipation due to slip-state of some
damping elements - tuned absorber; resonant response amplitude reduction due to
stick-state of other damping elements-damper.

Herein the dry friction behavior in this case can be approximated by an inter-
polation function of physical displacement coordinates; its hysteresis loop is then
deduced by Masing rules - referred to as “generalized Masing model". For example,
the dry friction law of this model can be approximated by a polynomial function
Equation (5.18). The coefficients would be determined by the experiments.

As an example, a1 is determined by the initial slope (the complete stick state),
a2 represents the curvature of the loading curve, a3 and a4 are calculated with the
static stiffness and the threshold of the dry friction elements (threshold of slip state).
The damping force is described by:

f =

{
P (x) = a1x+ a2x

3 + a3x
5 + a4x

7 x ∈ [0, xp]

P (xp) + kt(x− xp) x ∈ [xp,+∞]
(5.18)

More specifically, supposing n dampers are set in parallel to interpolate the gener-
alized Masing model:

(x0, fd0), (x2, fd2) · · · (xj , fdj) · · · (xk, fdk)

The threshold of each damper is determined by a ratio ri ∈ [0, 1]:

x1 = r1xg, x2 = r2xg · · ·xj = rjxg · · ·xn = rnxg (5.19)
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where the maximum threshold of all bilinear dampers is:

xg =
µdN

n
(5.20)

In consequence, the nonlinear force fi corresponds to each threshold value xi are
given as follows:

f1 = x1 (kt + (kd1 + kd2 + · · ·+ kdn))

f2 = x2 (kt + (kd2 + · · ·+ kdn)) + kd1x1

...

fi = xi

kt +
n∑
j=i

kdj

+
i−1∑
j=1

kdjxj

...

fn = xnkt +
n∑
j=1

kdjxj

(5.21)

The following relationship can be deduce by analogy:

fi+1 − fi = (xi+1 − xi)

kt +

n∑
j=i+1

kdj

 (5.22)

Based on the given data set, the interpolation polynomial in the Lagrange form
is defined by:

L(x) :=
k∑
j=0

fdjlj(x) (5.23)

where

lj(x) :=
∏

0≤m≤k
m6=j

x− xm
xj − xm

=
(x− x0)

(xj − x0)
· · · (x− xj−1)

(xj − xj−1)

(x− xj+1)

(xj − xj+1)
· · · (x− xk)

(xj − xk)

(5.24)
Equation (5.18) shows that dry friction force applied on the system varies in a
continuous form, which avoids damper “lock up". The first loading curve is found
to be a smooth curve as shown in Figure 5.8.

5.3 Reference numerical methods

5.3.1 Theory of Newmark-β method

Newmark-β method is a time integration method employed to solve differential
equations. It is widely used in numerical evaluation of the dynamic response in FE



5.3. Reference numerical methods 125

Figure 5.8: The hysteresis loop of an infinity of dampers in parallel

analysis. In Newmark-β method, relationships between displacement and velocity
are defined by using the extended mean value theorem.

u̇t+∆t = u̇t + (1− γ)üt∆t+ γüt+∆t∆t (5.25)

ut+∆t = ut + u̇t∆t+ (
1

2
− β)üt∆t

2 + βüt+∆t∆t
2 (5.26)

The relations above are implicit, because üt+∆t needs to be determined in or-
der to find u̇t+∆t and ut+∆t, but üt+∆t can not be found without knowing u̇t+∆t

and ut+∆t. Implicit methods involve the solution of a set of nonlinear algebraic
equations at each time step. The advantage is that they are unconditionally stable.
Transforming Equation (5.26), the acceleration is:

üt+∆t =
1

β∆t2
(ut+∆t − ut)−

1

β∆t
u̇t −

(
1

2β
− 1

)
üt (5.27)

Substituting Equation (5.27) in Equation (5.25), we get the velocity at instant t+∆t:

u̇t+∆t =
γ

β∆t
(ut+∆t − ut) +

(
1− γ

β

)
u̇t +

(
1− γ

2β

)
∆tüt (5.28)

Since the displacement, velocity and acceleration all satisfy the motion equation
Equation (5.29), we can obtain the following relationship Equation (5.30) to calcu-
late the displacement at instant t+ ∆t by substituting Equations (5.27) and (5.28)
into Equation (5.29):

Müt+∆t + Cu̇t+∆t +Kut+∆t = Qt+∆t (5.29)

K̂ut+∆t = Q̂t+∆t (5.30)
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Q̂t+∆t is the effective loading at instant t+ ∆t.

Q̂t+∆t = Qt+∆t +M

[
1

β∆t2
ut +

1

β∆t
u̇t +

(
1

2β
− 1

)
üt

]
+ C

[
γ

β∆t
ut +

(
γ

β
− 1

)
u̇t +

(
γ

2β
− 1

)
∆tüt

] (5.31)

The equivalent stiffness K̂ is:

K̂ = K +
1

β∆t2
M +

γ

β∆t
C (5.32)

To calculate forced response of the discrete model with Newmark-β method, the
algorithm is outlined as follows:
Step 1: Construct the model and form the stiffness, mass and damping matrix;
Step 2: Initialize ut, u̇t and compute üt;
Step 3: Choose an appropriate time step ∆t, Newmark parameter β and γ and
deduce the following constants used in integration:

c1 =
γ

β∆t
, c2 =

1

β∆t
, c3 =

1

2β
− 1, c4 =

γ

β
− 1,

c5 = ∆t

(
γ

2β
− 1

)
, c6 = ∆t(1− γ), c7 = γ∆t;

Step 4: Form the equivalent stiffness matrix:

K̂ = K + c0M + c1C;

Step 5: Calculate the loading:

Q̂t+∆t = Qt+∆t +M (c0ut + c2u̇t + c3üt) + C (c1ut + c4u̇t + c5üt) ;

Step 6: Compute the displacement at instant t+ ∆t: K̂ut+∆t = Q̂t+∆t;
Step 7: Deduce the velocity and acceleration at instant t + ∆t using the following
relationship:

üt+∆t = c0 (ut+∆t − ut)− c2u̇t − c3üt,

u̇t+∆t = u̇t + c6üt + c7üt+∆t.

Step 8: Take the last stable periods of the displacement time history and extract
the first harmonic response.

γ = 0.5, and β = 0.25 yields the “constant average acceleration method". In
using Newmark-β method, the damper kinematic states depend on instantaneous
velocity and force conditions, which need to be evaluated at each time step, especially
the sign of the damper velocity. In order to get accurate response, the integration
time step should be chosen appropriately.
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5.3.2 Theory of Harmonic Balance method

Among all methods in the frequency domain, the Harmonic Balance Method
(HBM), also known as the Fourier-Galerkin method, is introduced by Nayfeh and
Mook to study the dynamics of periodically excited systems with friction damp-
ing [Nayfeh 1979]. The Fourier coefficients become the new unknowns of the prob-
lem through an approximation of the periodic signals. The nonlinear problem can be
solved with a Newton-like iterative method. The accuracy of the response depends
on the retained harmonic or Fourier orders.

The governing equation of the discrete model is given by Equation (5.33), where
the friction force is introduced in the first member of the governing equation, which
reads:

Mü + Du̇ + Ku = F + fnl(u, u̇, t) (5.33)

where M is the mass matrix, D the damping matrix, K the stiffness matrix, and u

the array of the unknown physical displacements. F is the force vector applied on
the system. fnl(u, u̇, t) is the nonlinear friction force, which depends on the unknown
physical displacement and velocity.

By using the HBM, the time-dependent variables in the nonlinear equation are
expressed in terms of truncated Fourrier series [Laxalde 2007].

u(t) = u0 +

Nh∑
n=1

{un,ccos(nωt) + un,ssin(nωt)}

fnl(t) = f0
nl +

Nh∑
n=1

{
fn,cnl cos(nωt) + fn,snl sin(nωt)

}
F(t) = F0 +

Nh∑
n=1

{Fn,ccos(nωt) + Fn,ssin(nωt)}

(5.34)

By using Galerkin procedure, the motion equation in the frequency domain can
be written as follows with the balanced Fourrier components:

Λu = F + fnl (5.35)

The new unknowns of the motion equation are the Fourier components un,c, and
un,s. The Fourier components Fn,c, and Fn,s of the external force are derived by
using Discrete Fourier Transformation (DFT). The Fourier components fn,cnl , and
fn,snl of the nonlinear forces fnl are deduced with Alternating Frequency Time (AFT)
method [Cameron 2007, Lin 2016], which is illustrated in Figure 5.9. The AFT
method starts from the harmonic components of the response un,c and un,s, which
are predicted by a given iteration of Newton-like method. The associated displace-
ment and velocity in the time domain is expressed by using Inverse Discrete Fourier
Transform (IDFT) procedure. The nonlinear force in the time domain is then de-
duced in relying on the dry friction law. Lastly the harmonic components of the
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nonlinear force in the frequency-domain are given by using Discrete Fourier Trans-
form (DFT).

u =
[
u0,u1,c,u1,s, . . . ,uNh,s

]T
fnl =

[
f0
nl, f

1,c
nl , f

1,s
nl , . . . , f

Nh,s
nl

]T
F =

[
F0,F1,c,F1,s, . . . ,FNh,s

]T (5.36)

Figure 5.9: Illustration of Alternating Frequency Time process [Lin 2016]

The matrix Λ is block-diagonal, with

Λ = diag(K,Λ1, · · · ,ΛNh)

Λk =

(
−(kω)2M + K kωC

−kωC −(kω)2M + K

) (5.37)

The resulting nonlinear equations are solved using a modified Broyden’s method
[Broyden 1965], which greatly enhances the robustness and efficiency of the proce-
dure [Lin 2016].

Moreover, in order to get an accuracy and stable response to describe complex
nonlinear phenomena, marks turning and bifurcation points, [Von Groll 2001] de-
veloped a numerical algorithm based on HBM, permits following a solution branch
over varying system parameters via arc-length continuation [Nayfeh 2007].

Equation (5.35) is transformed into finding the root of the following equivalent
equation:

ε(u, ω) = Λu− F− fnl = 0 (5.38)

The idea of arc-length continuation method is to choose a continuation parameter
along the arc-length of a solution branch, pc, so that ω = ω(pc) and u = u(pc). From
equation (5.38), we have:
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Fu
du

dpc
+ Fω

dω

dpc
= [Fu Fω]

(
u′

ω′

)
= 0 (5.39)

The root (ω, u) to equation (5.38) is found by conducting a normalization with
respect to pc so that the tangent vector [u′;ω′]T has unit length:(

du

dpc

)2

+

(
dω

dpc

)2

= 1 (5.40)

Responses obtained with this method is more accurate while more computational
expensive. Since our research focuses on the numerical efficiency, modal synthesis
method retaining the first harmonic is used to evaluate the dynamic performance of
the system in the following.

5.4 Theory of nonlinear modal analysis

Time integration method such as Newmark-β provides quite accurate results as
well as transient responses; HBM is one of the most popular numerical methods in
analyzing nonlinear systems involving dry friction and the accuracy of the obtained
responses depends on the harmonic orders kept back in the analysis. Since we are
interested in the optimization of nonlinear systems with dry friction, more efficiency
numerical methods are required.

In this section, extensions of nonlinear modal synthesis are conducted to study
structures featuring hysteresis dry friction. A general formulation integrating fric-
tion force is developed by combing modal synthesis method and Masing’s rule. Two
analysis techniques are compared: real modal synthesis and complex modal synthe-
sis. The first technique consists in using real modes in modal synthesis; the friction
damping is obtained by evaluating the ratio of energy dissipation and maximum
energy per cycle. The second technique pertains to the use of complex modes; the
friction damping is obtained by calculating the ratio of eigenvalue’s imaginary and
real part. Compared to real modal synthesis, the complex modal synthesis method
has involved the friction damping in the resulting set of nonlinear equations to be
solved. This allows the extraction of nonlinear properties of the dry friction damper
without having to recalculate the energy dissipation. The nonlinear modal synthesis
provides nonlinear modes, the forced responses in steady-state can thus be computed
without having to recalculate the nonlinear modes. Frictional impact phenomena
and steady-state responses are analyzed by using the nonlinear modal parameters
extracted from the proposed method.

Modal synthesis method, which permits numerical efficiency to calculate steady-
state responses, is used to evaluate the dynamic performance of the system in the
following.

The friction model proposed herein is composed of two parts, the static stiffness
and the kinetic stiffness. fnl(u, u̇, t) can be split into two terms: one a dissipative
term and the other a spring term. The first term shows the damping capacity, and



130 Chapter 5. Structures involving dry friction

that the second term implies the shifting of the spring term that changes the naturel
frequencies of the system.

In general, the slip at the interface is a result of dynamic magnification around
the resonances [Guillen 1999]. It is therefore justifiable that one single mode of
vibration is involved to investigate the dynamic performance of the system in case of
slip. Nonlinear modal synthesis and modal synthesis of forced responses described in
4 can thus be applied to obtain the nonlinear modal shape, nonlinear frequency and
modal parameters depending on modal amplitude corresponding to Equation (5.33).

The nonlinear modal analysis (NLMA) entails decoupling Equation (5.33) with
N uncoupled equations through the use of nonlinear normal modes (NNMs), as well
as solving for eigensolutions to these uncoupled equations. λ̃j and Φ̃j are defined as
the eigenvector for a given modal amplitude qj , respectively. The forced responses
of the nonlinear model can be expressed as Equation (5.41) by applying the Ritz-
Galerkin method:

u ≈
N∑
j=1

uj ≈
Nr∑
j=1

qjΦ̃j (5.41)

In relying on the nonlinear modal synthesis presented in Chapter 4, the nonlinear
mode shapes Φ̃j and the eigenvalue λ̃j to the characterizing equation of the nonlinear
model Equation (5.42) can be computed by numerical calculations corresponding to
each modal amplitude q:

(−λ̃jM + K)(qjΦ̃j) + fnl(qj , Φ̃j) = 0 (5.42)

The algorithm to compute nonlinear modes and forced responses of the nonlinear
model involving dry friction is illustrated in Figure 5.10

The main difficulty with this model involving dry friction is the treatment of
dry friction force and the calculation of damping induced by dry friction force in
the nonlinear modal synthesis approach. Two modal synthesis methods can be used
to study the dynamic behavior of the system, i.e., by employing either real modes
or complex modes. The main difference between these two methods lies in the
operation of dry friction and the determination of frictional damping. Both these
two approaches support modal overview on the frictional damping phenomena, by
analyzing modal parameters of the nonlinear modes.

5.4.1 Frictional damping by using real modal synthesis

When applying real modal synthesis to the model, the dissipative anti-phase com-
ponent part of the friction force is neglected (the dissipative effect) when computing
eigen-solutions to Equation (5.33). However, the in-phase effect of the friction force
(the tuning absorber) is integrated in λ̃j .

The maximum elastic energy Emj for mode j is defined by:

Emj =
1

2
λjq

2
j (5.43)



5.4. Theory of nonlinear modal analysis 131

Discret mechanical model 
with dry friction interface

Nonlinear modal 
analysis

with fitted curve

Curve fitting with respect 
to modal amplitudes

Calculate the response 
of a single mode

Superpose all nonlinear 
modal response

Nonlinear steady-state 
forced response

 fsolve() in Matlab

Figure 5.10: Algorithm for the computation of forced responses of mechanical model
involving dry friction
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where λj is the eigenvalue to the characterizing equation, and qj is the modal am-
plitude of the nonlinear mode j.

The displacement for one cycle with frequency ωj is:

xt = qjΦ̃j cos(ωjt) (5.44)

The dry friction force f is determined by the friction law mentioned in Chapter
5.2, either bilinear (see Equation (5.16)) or polynomial(see Equation (5.18)) etc..

Using Masing’s rule, the friction force on one stabilized cycle is obtained with
the hysteresis loop:

fm1(x) = 2f

(
x+ xm

2

)
− fm x ∈ lower branch - 1, 2

fm2(x) = −2f

(
−x+ xm

2

)
+ fm x ∈ upper branch - 3, 4

(5.45)

The dissipated energy per cycle of the FE model is expressed as:

dEj =

Nt∑
i=2

1

2
(fnl(i) + fnl(i− 1)) (xt(i)− xt(i− 1)) (5.46)

where Nt is the sampling number over one stabilized period of friction-displacement
curve.

The frictional damping factor is afterwards determined by calculating the ratio
between the dissipated energy by the slip per cycle and the maximum elastic energy:

ηj =
1

2π

dEj
Emj

(5.47)

5.4.2 Frictional damping by using complex modal synthesis

By analogue, the nonlinear modal synthesis presented in Chapter 4 is used to obtain
the nonlinear mode shapes Φ̃j and the eigenvalue λ̃j . However, when employing the
complex modal analysis, the eigen-frequency and eigen-vector are both in complex
form, that is, composed by both real component and imaginary component. The
interaction of damping between the two masses is taken into account by using this
method. According to the normalization and orthogonal condition, the nonlinear
modal mass is 1 in real modal synthesis. while the nonlinear modal mass is no longer
1 in this complex modal synthesis, but a complex value.

The nonlinear normal mode and natural frequency are written by:

λ̃j = λ̃cj + iλ̃sj (5.48)

Φ̃j = Φ̃c
j + iΦ̃s

j (5.49)

By using this approach, the dynamics of the structure is also described by non-
linear modal parameters. The dissipative effect of friction force is involved in the
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deduction of the eigen-solutions. Since fnl can be divided into two terms: the first
term (imaginary part) showing the damping capacity; the second term (real part)
implying the shifting of the spring term that changes the naturel frequencies of the
system:

fnl = f cnl + if snl (5.50)

The relationship between the friction force and damper motion in steady state is
governed strictly by the first loading curve. The real part and imaginary part of the
dry friction force are deduced by taking the first harmonic when transforming the
first loading curve from time domain to frequency domain. This procedure explains
why the first loading curve is highlighted in Section 5.2.

Using the complex modal formulation, the frictional damping factor is deter-
mined directly by the ratio between λ̃sj and λ̃

c
j , but not by calculating energy dissi-

pation compared to the real modal synthesis.

ηj = −
λ̃sj

λ̃cj
(5.51)

It should be mentioned that complex modal synthesis will be more stable and
accurate compared to real modal synthesis in case that strong and complex damping
are involved in the structure, which is not considered here. Because damping factor is
included in the computation of nonlinear modes in complex modal synthesis. While
in real modal synthesis, energy dissipation in one cycle is used to deduce frictional
damping, while the dissipative terms are not integrated in the computation of eigen-
solutions.

Once the nonlinear mode shapes, nonlinear modal frequency, modal parameters
are determined, and frictional damping are calculated, forced responses of the sys-
tem can also be computed in relying on the modal synthesis approach presented in
Chapter 4.3.3.

5.5 Case study of 2 DOFs mass-stiffness model

In this section, a simple 2 DOFs mass-stiffness model described in Section 5.5 is
studied for the illustration of the proposed methodology and the validation purpose
as well. Transient responses are given by Newmark-β integration method in Section
5.5.1, and the steady-state responses and modal parameters are investigated in
with the proposed method in Section 5.4. Simulation results are discussed for the
Masing model with one bilinear element and the generalized Masing model with an
infinity of bilinear elements.

For the description and validation of the proposed strategy using the generalized
Masing model, the dynamic behavior of a simple 2-DOFs system is investigated.
The mass on the left is clamped to the wall and the right side is connected to
dry friction element. The system is excited by a tire balance type loading on m1 =

1 kg [Agnieszka 2005]: F = mω2R cosωt at a frequency ω, with m = 6 g, R = 4 cm.
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The investigated excitation frequency band is [8, 70] Hz. Friction damping elements
are connected to m2 = 1 kg. A slight viscous structural damping is integrated
into the model, with a damping ratio of 0.0005 proportional to the stiffness matrix
(k1 = 600 N/m, k2 = 400 N/m). The aforementioned nonlinear modal synthesis
based on real modes and complex modes in Chapter 5.4 are both applied to analyze
the dynamic performance of the system. Newmark’s method is used to get the
reference response curves.

Two types of Masing model are discussed in the following: the Masing model
with one bilinear element as shown in Figure 5.11; and the Masing model with n

dampers set in parallel to model the dry friction with n = 10, which is depicted in
Figure 5.12.

Figure 5.11: 2-DOF model with dry friction modeled by one damper

Figure 5.12: 2-DOF model with dry friction modeled by an infinity of dampers in
parellel

5.5.1 Time history of responses by using Newmark-β method

When the dry friction damper is modeled by a bilinear model with k0 = 1/2000∗k2,
kd = 1/20 ∗ k2 and µd = 0.5, temporal histories of the displacement and friction
force can be obtained by using Newmark-β method (β = 0.25 and γ = 0.5). The
whole transient period can be observed with Newmark-β time integration method,
while it takes time to obtain the stabilized results.

For a normal force N = 5 N , the damping point displacement, friction force
and displacement-friction curve are depicted in Figures 5.13, 5.15 and 5.17 respec-
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tively. These curves tend to be stable with a sufficient fine time step for integration.
Their corresponding steady-state curves are shown in Figures 5.14, 5.16 and 5.18.
Figure 5.16 shows that slip occurs when large amplitude displacement of damp-
ing point takes place. The dissipated energy induced by the slip in one period is
represented by the enclosed surface shown in Figure 5.18.
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placement obtained with Newmark-β
method when N = 5 N

t/s

47.5 48 48.5 49 49.5

x
/m

-0.1

-0.05

0

0.05

0.1

Figure 5.14: Stabilized displacement
of m2 obtained with Newmark-β
method when N = 5 N
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Figure 5.15: Time history of fric-
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method when N = 5 N
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Figure 5.17: Time history of load-
ing curve obtained with Newmark-β
method when N = 5 N
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Figure 5.18: Stabilized first load-
ing curve obtained with Newmark-β
method when N = 5 N

Applying the Newmark-β time integration method, the stabilized curves of



136 Chapter 5. Structures involving dry friction

damper’s displacement, the friction force and hysteresis loop are displayed in Fig-
ure 5.19 for the bilinear model, and in Figure 5.20 for the polynomial model.
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Figure 5.19: Bilinear Masing: Stabilized m2 displacement, frictional force and hys-
teresis loop obtained with Newmark-β method in case that N = 5 N
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Figure 5.20: Polynomial Masing: Stabilized m2 displacement, frictional force and
hysteresis loop obtained with Newmark-β method in case that N = 5 N

As one can see, when the normal load and the nonlinear friction coefficient are
fixed, these two models give different stabilized curves. For the bilinear damper
model, the amplitude of m2 displacement is 0.125 m; while 0.052 for the polyno-
mial model. As for the friction-displacement loading curve: the slope of the virgin
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curve is constant for the bilinear model; while it varies for the polynomial Masing
model, which is reasonable since the derivation of the polynomial in function of m2

displacement is no longer a constant. We can get better damping effect by properly
selecting polynomial coefficients, which will be discussed later.

5.5.2 Steady-state responses by using nonlinear modal synthesis
method

The emphasis in the present study is on qualitative trends in the dynamic behavior of
the generic system. By using modal synthesis is employed to study the steady-state
response with the aforementioned values of normal loads, the responses of m1 and
m2 obtained with real modal synthesis (reported in plus marks), complex modal
synthesis (reported in asterisk marks) are compared to that obtained with HBM
method (reported in dotted lines) and Newmark-β method (reported in solid lines),
as depicted in Figure 5.21 for m1 and Figure 5.22 for m2 (N = 35 N). All these
figures show response curves that closely match the reference methods, which reveals
that nonlinear modal synthesis method is applicable to the calculation of the forced
response of the system without sacrificing the accuracy of the results, especially
considering the complexity of the nonlinear effect being synthesized. Once again
the tuning effect and the damping effect corresponding to different normal loads are
revealed herein.
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Figure 5.21: Comparison of forced response of m1 obtained with real modal syn-
thesis, complex modal synthesis, Harmonic balance and Newmark methods for
N = 35 N

The influence of normal loads on the dynamic performance of the system is
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Figure 5.22: Comparison of forced response of m2 obtained with real modal syn-
thesis, complex modal synthesis, Harmonic balance and Newmark methods for
N = 35 N

analyzed herein. When the damper model is a simple bilinear model, the steady
state frequency response of m1 and m2 corresponding to six normal loads (N =

0, 5, 15, 25, 35, and 85 N) are plotted in Figures 5.23 and 5.24 by using complex
modal synthesis. As one can see, the variation of normal load affects the resonant
peak level and resonant frequency value: All these figures have revealed the damping
effect around the resonance and damper tuning effect of dry friction, that is, the
resonant frequency is dislocated or becomes greater when the normal force increases;
In the meanwhile, the damping level varies with the normal load level. The optimal
normal load that allows a maximal frictional damping in the neighborhood of the
first resonance is around 20 N; the optimal normal load that allows a maximal
frictional damping in the neighborhood of the second resonance is around 150 N, as
that can be seen in Figures 5.23 and 5.24.

When 10 dampers are set in parellel, the dry friction force is approximated by
The same conclusion can be obtained when the dry friction model is modeled by an
infinity of bilinear dampers (i.e. the friction policy is approximated by a polynomial
function). The frequency response curves obtained with aforementioned normal load
values are shown in Figures 5.25 and 5.26. The optimal normal load that allows a
maximal frictional damping in the neighborhood of the first resonance is also around
20 N.

Another interesting finding about the hysteresis damping model combined by an
infinity parallel damping elements is related to the coefficients of the polynomial.
The polynomial is used to represent the restoring force introduced in the motion
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Figure 5.23: Forced response of m1 corresponding to different normal load level of
bilinear model. N denotes the normal load, e.g., N = 15 N represents that the
normal load applied on the dry friction contact point is 15 N
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Figure 5.24: Forced response of m2 corresponding to different normal load level of
bilinear model
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Figure 5.25: Forced response of m1 corresponding to different normal load level
when the 10 bilinear model are set in parallel
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Figure 5.26: Forced response of m2 corresponding to different normal load level
when 10 bilinear model are set in parallel

equation. The polynomial coefficients are determined by the rheological model.
Their values are thus revealed by the design parameters of the dampers in the
model. Herein we have explored the influence of the distribution of ri associated to
each damper. The normal load is fixed: N = 5 N ; the dry frictional coefficient is
constant µd = 0.5; and the threshold for complete slipping state is xg = 0.0125 m.

When ri varies in the defined range for each bilinear hysteresis damper, the
damping effect and tuning effect are compared in using complex modal synthe-
sis. Forced responses of m1 and m2 corresponding to different threshold values of
each damper are displayed in Figures 5.27. These results imply that there exists a
very substantial stick-slip design region for physically reasonable values of damper
stiffness. This also indicates that even in parameter ranges yielding substantial
stick-slip, an optimal distribution of ri exists. The optimization of dry friction
damping effect can be investigated by employing techniques presented in Chapter 3,
an optimal ri distribution can be obtained by using an elitist multi-objective genetic
algorithm, which is not performed in this thesis.

5.5.3 Modal overview based on nonlinear modal synthesis method

Further insight into the qualitative nature of the dynamic response is gained by
looking at the equivalent natural frequency and modal damping ratio. Figures 5.28
and 5.29 display the variation of natural frequency and modal damping factor in
terms of modal amplitudes for the two modes, corresponding to different normal
load values. It is seen that nonlinear natural frequencies all stem from the linear
natural frequencies of the underlying system with dynamic stiffness and ultimately
approximate the linear natural frequencies of the system without the dynamic stiff-
ness. The low level modal amplitude corresponds to the case in which the system
features a crack, and the high level modal amplitude conforms to the case in which
the corresponding nonlinear boundary conditions are ignored. The evolution of the
modal damping factor exhibits a maximum, which accounts for an optimum non-
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Figure 5.27: Forced responses in function of frequency corresponding to different
design of polynomial Masing model when N = 15 N and xg = 0.0375 m are constant

linear damping arising from the friction element. It should be mentioned that the
maximum modal damping does not depend on the normal load, that is, when the
value of normal load changes, the value of maximum modal damping remains the
same. This can be explained by the reasoning in Annexes D. Notwithstanding, the
modal amplitude corresponding to maximum modal damping varies with normal
load.
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Figure 5.28: Evolution of natural frequency and modal damping factor vs. modal
amplitude, corresponding to different normal load level, using bilinear model

When the dry friction model is modeled by an infinity of bilinear dampers, the
variation of modal parameters vs. modal amplitude are indicated in Figure 5.30 for
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Figure 5.29: Evolution of natural frequency and modal damping factor vs. modal
amplitude, corresponding to different normal load level, using bilinear model

the first mode and Figure 5.31 for the second mode.
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Figure 5.30: Evolution of natural frequency and modal damping factor vs. modal
amplitude, corresponding to different normal load level, using generalized Masing
model

If we compare Figures 5.28, 5.29 and Figures 5.30, 5.31, the difference between
bilinear model and generalized Masing model is that the variation of natural
frequency and modal damping occurs immediately and continuously when slip
takes place. For example, both the modal frequency and the modal damping
in Figures 5.28 and 5.29 initiate their variations when modal amplitude attains
a certain value; while the change of modal frequency and modal damping in
Figures 5.30 and 5.31 take place as soon as the modal amplitude differing 0.

The curve of modal amplitude q in function of excitation frequency ω is called
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Figure 5.31: Evolution of natural frequency and modal damping factor vs. modal
amplitude, corresponding to different normal load level, using generalized Masing
model

“backbone curve". The “backbone curve" provide a valuable description of the sys-
tem dynamics that may allow for characterizing and quantifying nonlinearities in
the system. For a bilinear model, the synthesized forced responses corresponding
to different external load level are plotted in Figure 5.32 nearby the first resonance
and Figure 5.33 around the second resonance. The backbone curves are predicted by
nonlinear modes (reported in dashed lines). It can be observed that the pic-values
of forced responses follow the backbone curves.
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Figure 5.32: Synthesized forced response corresponding to different external loads
vs. Backbone curve for mode 1
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Figure 5.33: Synthesized forced response corresponding to different external loads
vs. Backbone curve for mode 2

5.6 Case study of a cantilever beam

Simulations on a cantilever beam have also been conducted. The length of the beam
is 5 m. An external sinusoidal excitation is applied on x = 2 m in the opposite
direction of y. A Rayleigh type damping is integrated in the structure, with α = 1

and β = 3 ∗ 10−4. The translation in z direction and rotations around x and y axis
are neglected. The left end is clamped to the wall; the right end is simply supported
and linked to a torsional spring, as illustrated in Figure 5.34. The movement of the
right end in θz yields to the dry friction law of a bilinear Masing model.

Figure 5.34: Beam model

5.6.1 Time history of responses by using Newmark-β method

By using Newmark time integration method, time histories as well as stable re-
sponses can be obtained. For an external sinusoidal force with an amplitude of
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10 N , a normal force of N = 10 N on the friction contact point. The temporal
responses and the stable responses of the DOF linked to torsional spring are plotted
in Figures 5.35 and 5.36. The time history and steady-state of friction force are
shown in Figures 5.37 and 5.38. It can be seen that the responses are stabilized
after a while, and both stick and slip states occurred. Similarly, the time history
and stable figures of displacement-friction force curves are depicted in Figures 5.17
and 5.18. The enclosed surface represents the dissipated energy by the friction force.
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Figure 5.35: Time history of dis-
placement obtained with Newmark-β
method when N = 10 N
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Figure 5.36: Stabilized displacement
obtained with Newmark-β method
when N = 10 N
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tion force obtained with Newmark-β
method when N = 10 N
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Figure 5.38: Stabilized friction force
obtained with Newmark-β method
when N = 10 N

5.6.2 Analysis based on nonlinear modal synthesis method

A comparative study of forced responses is conducted by using Newmark-β method,
HBM method retaining the first harmonic and nonlinear modal synthesis method
based on real modes. For an amplitude of external sinusoidal load equals to 10 N

and normal load applied on the friction point equals to 10 N , the forced responses
of the excitation node and friction point are given in Figure 5.41 and Figure 5.42,
respectively. The responses obtained with HBM method are reported in blue solid
lines, Newmark-β method are given in asterisk marks and real modal synthesis are
marked by black circles. All these figures show that the response curve closely
match with each another, which reveals that nonlinear modal synthesis method can
be used to calculate forced response of the system without sacrificing the accuracy
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Figure 5.39: Time history of load-
ing curve obtained with Newmark-β
method when N = 10 N

x/m
×10

-4

-1 -0.5 0 0.5 1

F
/N

-15

-10

-5

0

5

10

15

Figure 5.40: Stabilized first load-
ing curve obtained with Newmark-β
method when N = 10 N

of the results, especially considering the complexity of the nonlinear effect being
synthesized.
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Figure 5.41: Comparison of forced response of excitation point obtained with com-
plex modal synthesis, Harmonic balance and Newmark methods for N = 10 N
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Figure 5.42: Comparison of forced response of friction point obtained with complex
modal synthesis, Harmonic balance and Newmark methods for N = 10 N

Since nonlinear modal synthesis method is proven to be efficiency, it can be
employed to identify the optimal normal load applied on the contact point for an
optimal frictional damping. When observing forced responses around the first reso-
nance, response curves corresponding to different normal loads (N = 5, 10, 18, 25, 30,

and 35 N) are plotted in Figures 5.43 and 5.44 by using modal synthesis method.
As one can see, the variation of normal load affects the resonant peak level and reso-
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nant frequency value: All these figures have revealed the damping effect around the
resonance and damper tuning effect of dry friction, that is, the resonant frequency
is dislocated or becomes greater when the normal force increases; In the meanwhile,
the damping level varies with the normal load level. The optimal normal load, which
allows a maximal frictional damping in the neighborhood of the first resonance, is
around 20 N.
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Figure 5.43: Forced response of excitation point corresponding to different normal
load level of bilinear model
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Figure 5.44: Forced response of friction point corresponding to different normal load
level of bilinear model



148 Chapter 5. Structures involving dry friction

Further insight into the qualitative nature of the dynamic response is gained by
looking at the equivalent natural frequency and modal damping ratio. Figures 5.45
display the variation of natural frequency and modal damping factor in terms of
modal amplitudes for the first mode, corresponding to different normal load values
on the friction point. It can be seen that nonlinear natural frequencies all stem
from the linear natural frequencies of the underlying system with dynamic stiffness
(16.3 Hz) and ultimately approximate the linear natural frequencies of the system
without the dynamic stiffness (14.7 Hz). The low level modal amplitude corresponds
to the case in which the system features a crack, and the high level modal amplitude
conforms to the case in which the corresponding nonlinear boundary conditions are
ignored. The evolution of the modal damping factor exhibits a maximum, which
accounts for an optimum nonlinear damping arising from the friction element. It
should be mentioned that the maximum modal damping does not depend on the
normal load, that is, when the value of normal load changes, the value of maximum
modal damping (0.065) remains the same. This can be explained by the reasoning
in Annexes D. Notwithstanding, the modal amplitude corresponding to maximum
modal damping varies with the normal load.

modal amplitude (m)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

fr
e

q
u

e
n

c
y
 (

H
z
)

14.5

15

15.5

16

16.5

modal amplitude (m)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

m
o

d
a

l 
d

a
m

p
in

g

-0.02

0

0.02

0.04

0.06

0.08

N 0

N 5

N10

N 20

N Inf

Figure 5.45: Evolution of natural frequency and modal damping factor vs. modal
amplitude, corresponding to different normal load level, using bilinear model

5.7 Case study of the assembled plates

Simulations on an assembled plates model have also been conducted. The same
model used in Section 3.2 and 4.5 has been investigated. Rubber layers are bonded
on the interfaces between the substructures. We remind readers the model contains
two Kirchhoff plates and one rubber layer interface. Plate 1 on the left side is
denoted by S1: its length a1 is 0.66 m, the width b1 = 0.6 m and the thickness e is
0.002 m; Plate 2 on the right is denoted by S2: its length a2 is 0.44 m, the width
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b2 = 0.6 m and thickness e = 0.002 m; The rubber material is padded on both the
top and bottom of plates so as to ensure the connections between S1 and S2, with
a thickness (θ) of 0.002 m and a width (l) of 0.003 m. The thickness and width
variation of the rubber layer acts upon the change in its stiffness value. The model
is excited with a tire balance type loading [Agnieszka 2005]: F = mω2R cosωt at a
frequency ω, with m = 6 g, and R = 4 cm. The excitation is located at x = 0.44 m

and y = 0.2 m, hence lying on S1. Structural hysteresis damping has been integrated
into the model, with a damping ratio of 0.02. Dry friction devices are continuously
distributed along the interface, acting as tortional forces between S1 and S2. The
nonlinear frictional forces are assumed to lie in the tortional direction of θy. The
relative displacement between S1 and S2 in θy direction yields to the dry friction
law of a bilinear Masing model, and the dry friction damper is modeled by a bilinear
model with kd = 50, kt = 1/100 ∗ kd and µd = 0.5. Figure 4.3 shows the FE model
of this system.

Figure 5.46: FE model of the plate

5.7.1 Time responses by using Newmark-β method

By using Newmark time integration method, time histories as well as stable re-
sponses can be obtained. The value of normal forces applied on the dry friction
contacts along the interface is N = 0.01 N . The stablized responses of one DOF
linked to its torsional spring is plotted in Figure 5.47. The steady-state figure of
the friction force of one device is shown in Figure 5.48. It can be seen that both
stick and slip states occurred. The stablized displacement-friction force curves is
also depicted in Figure 5.49. The enclosed surface represents the dissipated energy
by the friction force.
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Figure 5.47: Stabilized displacement obtained with Newmark-β method (N =

0.01 N)
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Figure 5.49: Stabilized loading curve obtained with Newmark-β method (N =

0.01 N)

5.7.2 Analysis based on nonlinear modal synthesis method

A comparative study of forced responses is conducted by using Newmark-β method,
HBM method retaining the first three harmonics, HBM method retaining the first
harmonic and nonlinear modal synthesis method based on real modes and complex
modes. For an amplitude of external sinusoidal load equals to 0.25 N and normal
load applied on the friction point equals to 0.01 N , the forced responses of the exci-
tation node is given in Figure 5.50. The response obtained with Newmark-β method
is shown in black solid line, HBM method retaining the first three harmonics in blue
solid line, HBM method retaining the first three harmonics in magenta solid line,
modal synthesis based on real modes in plus marks and modal synthesis based on
complex modes by red asterisk marks. No significant difference is observed between
the HBM method retaining the first three harmonics and only the first harmonic.
This figure also reveals that the response curves given by these methods closely
match with each another, which shows that nonlinear modal synthesis method can
be used to calculate forced response of the system without sacrificing the accuracy
of the results, especially considering the complexity of the nonlinear effect being
synthesized.

Since nonlinear modal synthesis method is proven to be efficiency, it can be em-
ployed to identify the optimal normal load applied on the contact point for an opti-
mal frictional damping. When observing forced responses around the first resonance,
response curves corresponding to different normal loads (N = 0, 0.02, 0.05, 0.1, 0.3,

and 30 N) is plotted in Figure 5.51 by using modal synthesis method. As one can see,
the variation of normal load affects the resonant peak level and resonant frequency
value: All these figures have revealed the damping effect around the resonance and
damper tuning effect of dry friction, that is, the resonant frequency is dislocated or
becomes greater when the normal force increases; In the meanwhile, the damping
level varies with the normal load level. The optimal normal load, which allows a
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Figure 5.50: Comparison of forced response of excitation point obtained with real
modal synthesis, complex modal synthesis, Harmonic balance-3 harmonics, Har-
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maximal frictional damping in the neighborhood of the first resonance, is around
0.05 N.
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Figure 5.51: Forced response of excitation point corresponding to different normal
load level of the plate. N denotes the normal load applied on the dry friction contact

Further insight into the qualitative nature of the dynamic response is gained by
looking at the equivalent natural frequency and modal damping ratio. Figures 5.52
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display the variation of natural frequency and modal damping factor in terms of
modal amplitudes for the first mode, corresponding to different normal load values
on the friction point. It can be seen that nonlinear natural frequencies all stem
from the linear natural frequencies of the underlying system with dynamic stiffness
(5.4 Hz) and ultimately approximate the linear natural frequencies of the system
without the dynamic stiffness (3.7 Hz). The low level modal amplitude corresponds
to the case in which the system features a crack, and the high level modal amplitude
conforms to the case in which the corresponding nonlinear boundary conditions are
ignored. The evolution of the modal damping factor exhibits a maximum, which
accounts for an optimum nonlinear damping arising from the friction element. It
should be mentioned that the maximum modal damping does not depend on the
normal load, that is, when the value of normal load changes, the value of maximum
modal damping (0.25) remains the same. This can be explained by the reasoning
in Annexes D. Notwithstanding, the modal amplitude corresponding to maximum
modal damping varies with the normal load.
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Figure 5.52: Evolution of natural frequency and modal damping factor vs. modal
amplitude, corresponding to different normal load level, using bilinear model

To sum up, steady-state responses obtained with modal synthesis method is in
accordance with that with Newmark-β time integration method and HBM. Modal
parameters in function of modal amplitude, including natural frequency and modal
damping are also available. The efficiency and the speed of the method allow one
to study the optimal normal load that should be applied on the friction damper.





Part 2: Conclusions

In Chapter 4, we proposed a nonlinear modal synthesis approach for analyzing
assembled nonlinear systems. The nonlinear mode concept is combined with re-
duction techniques. Reduced nonlinear modal synthesis is developed by employing
constraint modes or branch modes. Nonlinear mode shapes and nonlinear modal
parameters are obtained by using the proposed reduced nonlinear modal synthesis.
Steady-state forced responses were approximated by selected nonlinear modes based
on a single nonlinear mode approach. The numerical results of an assembled system
have proven the efficiency of this derived strategy. This model has been reduced to a
smaller size while maintaining sufficient information to describe model performance
over the targeted frequency band. A significant advantage of the reduced nonlinear
modal synthesis lies in its computation time savings. The truncation effects of in-
ternal modes and branch modes were subsequently investigated. Furthermore these
extended approaches provide a modal overview to analyze the nonlinear behavior
of the system. Based on the reduced nonlinear modal synthesis, forced responses
of harmonic excitation can be easily calculated and the application on an assem-
bled plates system show that evident instable regions are detected when excitation
frequency are nearby 36 Hz or 48 Hz for the interested frequency range under
50 Hz.

In Chapter 5, we’ve presented a simple and efficient modal synthesis method
to analyze the dynamic behavior of a nonlinear system integrating dry friction.
Passive control of system vibration is conducted by regulating normal load applied
on the frictional surface. A generalized Masing model for describing dry friction
model is implemented in the nonlinear modal synthesis approach that is described
in Chapter 4. This generalized model based on Masing rules can describe rich
nonlinear phenomena with the polynomial coefficients determined by physical-based
constraints. Both real nonlinear modal synthesis and complex nonlinear modal
synthesis have been carried out and gave satisfying results. While it should be
noted that when analyzing more complicated nonlinear structures, real nonlinear
modal synthesis may come with difficulty in calculating nonlinear damping factor,
since the damping factor is not integrated in the modal synthesis approach. The
proposed method has been applied to a two DOFs system and a cantilever beam for
purpose of illustration and validation. The optimal normal load for the two DOFs
system is 20 N around the first resonance, that for the cantilevel beam is 25 N in
the neighborhood of the first resonance, and that for the assembled plates system is
0.05 N. All these examples have proven the efficiency of the presented methodology.

The proposed reduced nonlinear modal synthesis is applicable to optimizing
weakly nonlinear systems in the pre-design process.





Conclusions and perspectives

General conclusions

In this thesis, hybrid modal synthesis methods are developed to study the dynamic
characteristics of assembled systems, including linear systems, nonlinear systems
and coupled fluid-structure systems. The methods are then applied to design the
passive interfaces in assembled structures so as to reduce the vibration and noise.
Specifically, the main contributions and finds are listed below.

The extension of double modal synthesis method. The method can be
used to analyze assembled structures with huge interface degrees of freedom. There
are two stages of condensation: the first one is on the internal DOFs; and the
second one is related to branch mode which further reduces the number of interface
DOFs. The reduction basis then consists of the branch modes, the excitation modes
and the constraint modes. This double modal synthesis method is further extended
to study coupled fluid-structure systems by using a third modal reduction on the
fluid DOFs. In the presented examples, the CPU time for the forced responses is
reduced by 80% when double modal synthesis is applied; The CPU time for the
forced responses of a coupled fluid-structure system is saved by 97%, since only 428

modes of the overall 4810 modes are retained. In the meanwhile, the results still
have good agreements with the full finite element model.

The study of modal parameters. As the mid-stage results, these parameters
can be extracted from the aforementioned modal synthesis process. The main
advantage is that computing these modal parameters are faster than the forced
response. Moreover, they also have physical meanings: modal parameters described
in Chapter 1 indicate vibration transmission between substructures in the system
and those in Chapter 2 characterize noise transmissions in the system. The
vibration or noise transmission between substructures can thus be quantified by
these parameters.

The proposal of a numerical scheme for the optimization process.
The aim of the optimization process is searching for a best design of the interface
damper in order to reduce the vibration and noise level of the assembled structure.
The modal parameters are regarded as objective functions. Meta-models based on
Kriging approximations as well as an elitist non-dominated sorting genetic algorithm
are employed to solve this multi-objective problem. Two examples are given for val-
idation purposes: the first one is an assembled plates system and the second one is
coupled fluid-structure system. We show that the CPU time of evaluating surrogate
models is reduced by 0.01 % while the accuracy is maintained. The best con-
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figurations for both examples are found and validated by the forced response results.

The extensions of modal synthesis for analyzing nonlinear system.
To extend modal synthesis for nonlinear systems, the nonlinear mode concept
is introduced. The computing of nonlinear modes of the system is accelerated
by using reduction techniques similar with the linear version. However, different
from those linear modes, these nonlinear modes may depend on their modal
amplitudes. Nonlinear modal parameters characterizing dynamic performance of
nonlinear systems are deduced from nonlinear modal synthesis approach, and they
are further interpolated in function of their modal amplitudes. The application on
an assembled nonlinear system shows that the CPU time of computing nonlinear
modes is reduced by 67% using reduced models instead of the full finite element
model. The accuracy of the numerical results is verified by the analytical solutions.

The optimization of nonlinear systems based on nonlinear modal syn-
thesis using dry friction dampers. The extended nonlinear modal synthesis
method is then applied to analyze the dry friction systems. Both complex modes
and real modes are used in the synthesis to calculate the frictional damping. By
applying this numerical scheme on two degrees of freedom system and a cantilever
beam, steady-state responses obtained by the proposed modal synthesis method
show quite good agreement with those obtained by multi-harmonic balance method
and Newmark method. Optimization of the system is then executed by regulating
the normal load applied on frictional contact.

Future work

Application on real industrial models. This thesis is in collaboration with
PSA group, a straightforward direction for the future work is to apply the proposed
numerical schemes on finite element models of PSA. The passive interface control
strategies, including padding rubber layer and adding dry friction dampers, have
shown their efficiency in studying academic models. Since these strategies are easy
for implementation, it’s worthwhile to employ this strategy to analyze large-size in-
dustrial models with more realistic rubber layer model. It will also be interesting to
apply friction dampers on interfaces between substructures of more complex models.

Optimization design of interfaces in the nonlinear systems. In our
work, we manage to control the vibration of linear systems by padding rubber layers
on interfaces. It is natural to think about extending this strategy to nonlinear
systems. Since the analysis of nonlinear systems requires more time for their
dependence on modal amplitude and other complexities, we propose to conduct the
optimization in two steps: a first control of system vibration by adding dry friction
dampers with an appropriate normal load; a second optimization of the dynamic
performance of the nonlinear system by padding viscoelastic rubber layers on the
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interfaces between substructures.

Active control of nonlinear systems. The optimal normal load applied on
the frictional contact for a certain frequency range is found by employing nonlinear
modal synthesis method, while the optimal normal load depends on the external
excitation force and the excitation frequency. When the interested frequency
range is wide, active control by tuning normal load in accordance with interested
frequency can be used. Since the dynamic behavior of the system in resonant
condition is dominated by its main resonant mode, Independent Modal Space
Control (I.M.S.C.) seems to be prominent in performing the active control mode by
mode. Moreover, active or semi-active devices can be conceived so as to improve the
dynamic performance. We propose to research a system that allows for real-time
control of friction forces at interfacial bonding sites by using piezo-electric materials.

Experimental validations. All the numerical schemes proposed in this thesis
need to be experimentally validated so as to confirm our understanding. It seems to
be prominent to pad rubber layers on interfaces between substructures and examine
the vibration attenuation of doing so. It will also be interesting to optimize the
localization of rubber layers in the global system. We can also measure the instable
excitation range of nonlinear systems experimentally by observing the temporal
response. Experimental validation of dry friction dampers are also expected.
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Appendix A

Kriging approximations

The theoretical aspects of Kriging approximations are briefly introduced in two steps
as follows: the first step consists of construction of interpolation models; the second
is about the prediction of intermediate values.

In order to construct surrogates models, a set of m design sites S = [s1 ... sm]

and responses Y = [y1 ... ym] are given by computer experiments, which are assumed
to satisfy the following conditions:

µ [S:,j ] = 0, V [S:,j , S:,j ] = 1, j = 1, ... , n,

µ [Y:,j ] = 0, V [Y:,j , Y:,j ] = 1, j = 1, ... , q,
(A.1)

where µ represents the mean and V denotes the covariance.
By the use of a regression model F and a stochastic process, ŷ is adopted to

express the deterministic response y(x):

ŷl(x) = F (β:,l, x) + zl(x), l = 1, ... , q. (A.2)

The regression model is realized by the use of a linear combination of p chosen
functionsfj , and βk,l are regression parameters:

F (β:,l, x) = β1,lf1(x) + · · ·+ βp,lfp(x)

= [f1(x) · · · fp(x)]β:,l

= f(x)Tβ:,l

(A.3)

The stochastic process is assumed to have mean zero and covariance between
z(w) and z(x):

E [zl(w)zl(x)] = σ2
lR(θ, w, x), l = 1, ... , q (A.4)

where σ2
l is the process variance for the lth compnent of the response and R(θ, w, x)

is the correlation model with parameters θ.
The true value of the response is written as:

yl(x) = F (β:,l, x) + α (β:,l, x) , (A.5)

By proper choice of β, the approximation error α would behave like white noise in
the region of interest.

The prediction on untried sites is carried out based on the expansion of the
deduced models above: correlation models F = [f(s1) · · · f(sm)]T and stochastic
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models Rij = [R(θ, s1, sm)]T . The stochastic-process correlations models at an
untried point x is:

r(x) = [R(θ, s1, x) · · · R(θ, sm, x)]T (A.6)

In considering a linear predictor ŷ(x) = cTY , the error is:

ŷ(x)− y(x) = cT (Fβ + Z)−
(
f(x)Tβ + z

)
= cTZ − z +

(
F T c− f(x)

)T
β,

(A.7)

Under the condition that the predictor is unbiased, i.e. F T c − f(x) = 0, the mean
squared error of the predictor is:

ϕ(x) = E
[
(ŷ(x)− y(x))2

]
= E

[(
cTZ − z

)2]
= E

[
z2 + cTZZT c− 2cTZz

]
= σ2

(
1 + cTRc− 2cT r

)
.

(A.8)

The Lagrangian function subject to the unbiased constraint gives:

L(c, λ) = σ2
(
1 + cTRc− 2cT r

)
− λT

(
F T c− f

)
(A.9)

The minimization of ϕ with respect to c requires the derivation of Lagrangian func-
tion to be zero. Then λ and c satisfy:

λ̃ =
(
F TR−1F

)−1 (
F TR−1r − f

)
,

c = R−1
(
r − Fλ̃

)
.

λ̃ = − λ

2σ2

(A.10)

The approximate value of the response is thus:

ŷ(x) = rTR−1Y −
(
F TR−1r − f

)T
β∗

= fTβ∗ + rTR−1 (Y − Fβ∗)
= f(x)Tβ∗ + r(x)Tγ∗.

(A.11)

where the generalized least squares solution with respect to R for the regression
problem is

β∗ = (F TR−1F )−1F TR−1Y (A.12)

where γ∗ is computed via the residuals:

Rγ∗ = Y − Fβ∗ (A.13)
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With probabilistic tools, the mean squared error of the predictor is expressed
by:

ϕ(x) = σ2
(
1 + cT (Rc− 2r)

)
= σ2

(
1 +

(
Fλ̃− r

)T
R−1

(
Fλ̃+ r

))
= σ2

(
1 + λ̃TF TR−1Fλ̃− rTR−1r

)
= σ2

(
1 + uT

(
F TR−1F

)−1
u− rTR−1r

)
.

(A.14)

where σ2 = 1
m(Y − Fβ∗)TR−1(Y − Fβ∗) and u = F TR−1r − f with the maximum

likelihood estimate method.
It should be noted that β∗ and γ∗ are fixed for a fixed set of design sits. We only

need to compute f(x) and r(x) for every new x and add up f(x)Tβ∗ and r(x)Tγ∗.
The construction of Kriging models relies on three aspects: the experimental

design, the regression model and the correlation model. 1) For the experimen-
tal design, it is important to select the inputs at which to run the deterministic
simulation in order to reduce the statistical uncertainty of the computed predic-
tion. Algorithms with space filling properties are needed to produce deterministic
designs, such as rectangular grid and Latin hypercube sampling strategy. 2) For
the regression model, the toolbox provides regression models with polynomials of
orders 0, 1 and 2. 3) For the correlation model, the toolbox is equipped with 7
correlation functions: the exponential, the general exponential (which have both
shapes depending on the parameter: Gaussian and exponential), the Gaussian, the
cubic, the linear, the spline and the spherical function. The choice of correlation
function should in accordance with the underlying phenomenon, for example: if
the underlying phenomenon is continuously differentiable, Gaussian, cubic or the
spline function should be chosen since the correlation function would likely show a
parabolic behavior near the origin; while exponential, general exponential, linear or
spherical behaves better for phenomena showing a linear behavior near the origin.

Further details about the Kriging approximation can be found in the DACE
toolbox by [Lophaven 2002].





Appendix B

An elitist multi-objective genetic
algorithm

The theoretical aspects concerned in this method are briefly presented in the fol-
lowing.

The initialized population is sorted based on non-domination by the use of the
information about the set that an individual dominate (Sp) and number of individ-
uals that dominate the individual (np).

Once the non-dominated sort is complete the crowding distance is assigned. The
boundary values for each individual are assigned infinite distance with I(d1) = ∞
and I(dn) =∞. The basic idea behind the crowing distance is finding the euclidian
distance between each individual in a front based on their m objectives in the m
dimensional hyper space. So for the kth individual, we have:

I(dk) = I(dk) +
I(k + 1).m− I(k − 1).m

fmaxm − fminm

(B.1)

After that the individuals are sorted based on non-domination and with crowding
distance assigned, the selection is carried out with a crowded-comparison-operator
using a binary tournament selection. The genetic algorithm employed Simulated
Binary Crossover operator for crossover and polynomial mutation[Deb 1994]. The
simulated binary crossover is given by:

c1,k =
1

2
[(1− βk)p1,k + (1 + βk)p2,k]

c2,k =
1

2
[(1 + βk)p1,k + (1− βk)p2,k]

(B.2)

ci,k is the ith child with kth component, pi,k is the selected parent and βk (≥ 0) is a
sample from a random generated number having the density:

p(β) =
1

2
(ηc + 1)βηc , if 0 ≤ β ≤ 1

p(β) =
1

2
(ηc + 1)

1

βηc+2
, if β > 1

(B.3)

The distribution is obtained from a uniformly sampled random number u between
0 and 1.

β(u) = (2u)
1
η+1

β(u) =
1

[2(1− u)]
1
η+1

(B.4)
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ηc is the distribution index for crossover, which decides how well spread the children
will be from their parents.

Defining pk the parent with puk being the upper bound and plk the lower bound,
the child ck is:

ck = pk + (puk − plk)δk (B.5)

δk is small variation which is calculated from a polynomial distribution by using

δk = (2rk)
1

ηm+1 − 1, if rk < 0.5

δk = 1− [2(1− rk)]
1

ηm+1 , if rk ≥ 0.5
(B.6)

rk is an uniformly sampled random number between 0 and1; ηm is mutation distri-
bution index.

The offspring population is afterwards combined with the current generation
population and selection is performed to set the individuals of the next generation.

Further details about the fast, elitist multi-objective genetic algorithm can be
found in the NSGA-II toolbox by [Seshadri 2006].



Appendix C

Discussion on nonlinear branch
modal synthesis

Since the nonlinearities are located at the interfaces between substructures and
other parts are assumed to be linear, naturally we consider decomposing nonlinear
modes by nonlinear branch modes (condensation of interface DOFs) and linear fixed
interfaces modes (condensation of internal DOFs of substructures).

This idea is attractive since less variables (NB) are involved in the nonlinear
problem in place of Nr = NB +NI with branch modes. This method is referred as
nonlinear branch modal synthesis and the problem is formulated as follows:

The solutions to nonlinear branch mode-j are solved by the use of a residu
function according to Kryloff and Bogoliubov’s equivalent linearization method:

ε(qj) =
[
(−λ̃jBMB + λ̃jB)(qjΦ̃

j
B)
]
−
[
(−λ̃jBMB + KB)(qjΦ̃

j
B) + ΨBf̃(qjΦ̃

j
B)
]

(C.1)

where

MB = (ΨB)TMΨB, KB = (ΨB)TKΨB, ΨB =

[
IJJ

ΨSJ

]
The calculation here is is similar to that for nonlinear modes described in Sec-

tion 4.3.1, except that herein we compute nonlinear branch modes.
Since nonlinearities only make appearance in interface DOFs, the nonlinear force

is simplified with the transformation matrix TBI as follows:

f̃(u) = α∆u3 =
3

4
α∆(TBIqBI)

3 =
3

4
α

[
∆(Φ̃BqB)3

0

]
(C.2)

where
u = TBIqBI

TBI =
[

TB TI

]
TB =

[
XB

ΨSJXB

]
qBI =

[
qB

qI

]
The solution to the residu function contains NB + 1 variables with λ̃jB = (ω̃jB)2:

X̃j
B =

(
λ̃jB
Φ̃j
B

)
(C.3)

By analogy, the nonlinear branch modes are solved by minimizing the residue
function ε according to the steps outlined in Section 4.3. The difference is that the
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linear branch modes (λjB, Φj
B) are set as initial conditions for this nonlinear problem.

Likewise, the nonlinear branch mode can also be written by a linear combination of
linear branch modes with nonlinear coefficients depending on the modal amplitude:

Φ̃j
B =

NB∑
k=1

β̃jkΦ
j
B, (β̃jj = 1) (C.4)

The matrix of nonlinear branch modes is formed by the retained modes:

Φ̃B =
[

Φ̃1
B Φ̃2

B · · · Φ̃NB
B

]
(C.5)

The motion equation of the system subjected to a harmonic excitation force F
at frequency ω is:

T̃T
(
−ω̃2M + iC + K

)
T̃q + T̃T 3

4
α∆(T̃q)

3
= T̃TF (C.6)

with

M =

[
MJJ MJS

MSJ MSS

]
C =

[
CJJ CJS

CSJ CSS

]
K =

[
KJJ KJS

KSJ KSS

]
The transformation matrix is also nonlinear due to Φ̃B:

T̃ =

[
IJJΦ̃B 0

−K−1
SSKSJΦ̃B ΦS

]
(C.7)

The transformed matrix turn out to be:

TTMT =

[ ˜̄MJJ
˜̄MJS˜̄MSJ
˜̄MSS

]
TTKT =

[ ˜̄KJJ
˜̄KJS˜̄KSJ
˜̄KSS

]
TTCT =

[ ˜̄CJJ
˜̄CJS˜̄CSJ
˜̄CSS

]

TT fnl =

[ ˜̄fnl
0

]
(TT )F =

[ ˜̄FJ

F̄S

]
with ˜̄MJJ =

(
Φ̃B

)T
(MJJ + DT

SJMSJ + MJSDSJ + DT
SJMSSDSJ)Φ̃B

˜̄MJS =
(
Φ̃B

)T
(MJS + DT

SJMSS)ΦS˜̄MSJ = (ΦS)T (MSJ + MSSDSJ)Φ̃B˜̄MSS = (ΦS)T MSSΦS

DSJ = −K−1
SSKSJ

(C.8)

Further reduction can be applied by seperating the reduced matrixes into two
parts (branch modes and internal modes) when calculating forced responses of the
system. By developing the second part of Equation C.6, we get:[
−ω2˜̄MSJqJ + iω ˜̄HSJqJ + ˜̄KSJqJ

]
+
[
−ω2M̄SSqS + iωH̄SSqS + K̄SSqS

]
= F̄S (C.9)

The generalized coordinates qS can be replaced by:

qS = (ĒSS(ω))−1(FS − ˜̄ESJ(ω)qJ) (C.10)
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with
ĒSJ = −ω2˜̄MSJ + iω ˜̄HSJ + ˜̄KSJ

ĒSS = −ω2M̄SS + iωH̄SS + K̄SS

(C.11)

By developing the first part of Equation C.6:

[
−ω2˜̄MJJ + i ˜̄HJJ + ˜̄KJJ

]
qJ +

[
−ω2˜̄MJS + i ˜̄HJS + ˜̄KJS

]
qS + ˜̄fnl = ˜̄FJ (C.12)

with

˜̄EJJ(ω) = −ω2˜̄MJJ + i ˜̄HJJ + ˜̄KJJ˜̄EJS(ω) = −ω2˜̄MJS + i ˜̄HJS + ˜̄KJS

(C.13)

In replacing C.10 in this equation, the problem turns out to be solving qJ to
the following equation:

˜̄EJJ(ω)qJ + ˜̄EJS(ω)( ˜̄ESS(ω))−1(F̄S − ˜̄ESJ(ω)qJ) + ˜̄fnl = ˜̄FJ (C.14)

The reasoning seems to be persuasive, while the simulation results are not sat-
isfying. This can be explained from both theoretical and physical aspects.

From the theoretical point of view, a logic hole is checked out. The nonlinear
branch modes represent global system performance while remain component modes,
thus the dependancy of eigenvectors on q could not be employed during the calcula-
tion of generalized coordinates qJ of the system as that in Section 4.3.1. Because q
is the modal amplitude of the global mode, while the relationship established in Φ̃

and q is for branch mode. The generalized coordinates of branch mode can be solved
by projecting the physical coordinates on modal space with constraint mode ma-
trix TB. qJ is thus the solution to Equation C.15. However, qS remains unknown.
These variables can be approximated as linear, but the approximations turn out to
be quite coarse and dangerous since nonlinear phenomena show their complexity
and interaction with each other.

(T̃B)T
(
−ω2M + iC + K̃

)
T̃BqJ = T̃T

BF (C.15)

From the physical aspect, nonlinear phenomenon can not be decomposed into
nonlinear part and linear part. Once nonlinearity takes place, the whole system is
influenced. Thus the idea about nonlinear branch modes and linear internal modes is
biased, and internal modes are also nonlinear when combined with nonlinear branch
modes.





Appendix D

Analysis of nonlinear modal
damping ratio

The objective of this study is to analyze the modal damping ratio of dry friction
devices. The nonlinear state is a transition state between linear state of the system
when the friction contact is set free and linear state of the system when the fric-
tion contact is encastered. We are thus thinking about representing the nonlinear
state by using the free linear state and encastered linear state with an appropriate
mathematical expression.

For the sake of simplicity, substructures connected by this damping device are
denoted M1 and M2 respectively, as shown in Figure D.1. The dry friction device is
a hysteresis damper with stiffness shifting effect, thus expressed by: k∗ = e(1 + iβ).
The analysis is carried out by the residu approach described in [Jézéquel 1990]: the
residu stiffness attached to M1 and M2 are denoted k1 and k2, which represent the
influence of initial structure on the global system by the encastered DOF; the modal
displacements X1 and X2 are supposed to be not influenced by the addition of the
damping device.

The equivalent stiffness of this model (see Figure D.2) with two stiffness in series
is:

k =
k1 ∗ k2

k1 + k2
(D.1)

Suppose that the initial structure (before the addition of the friction device) is
subjected to hysteresis damping, the complex eigenvalue is expressed by:

λ1 = −ω̃2
1(1 + iη1) (D.2)

where ω̃1 is the natural frequency and η1 is the hysteresis damping for one mode.
According to [Jézéquel 1990], the equivalent impedance is written by:

λ1 = −ω̃2
1(1 + iη1) (D.3)

Figure D.1: Rheological model of assembled structures
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Figure D.2: Equilavent rheological model of assembled structures

where

a =
k
[
χ+ 1 + β2

]
(χ+ 1)2 + β2

b =
kχβ

(χ+ 1)2 + β2
χ =

k

e
(D.4)

The eigenvalue of the new model after the addition of this damping device turns
to be:

λ = λ1 − Zeq (X2 −X1)2 = −ω̃2
1(1 + iη1)− (a+ ib) (X2 −X1)2 (D.5)

The natural frequency is:

ω̃2 = −Re(λ) = ω̃2
1 + a (X2 −X1)2 (D.6)

and the hysteresis damping factor is:

η =
Im(λ)

Re(λ)
=
ω̃2

1η1 + b (X2 −X1)2

ω̃2
1 + a (X2 −X1)2 (D.7)

when the system is extremely damped, i.e. e→ +∞, the real part of the equiv-
alent impedance tends to k. According to equation, The natural frequency of the
encastered system is:

ω̃2
∞ ≈ ω̃2

1 + k (X2 −X1)2 (D.8)

Conversly, the residu stiffness can be expressed by:

k ≈ ω̃2
∞ − ω̃2

1

(X2 −X1)2 (D.9)

In replacing Equation D.4, D.5 and D.9 in Equation D.6, we get:

ω̃2 ≈
[
χ+ 1 + β2

]
ω̃2
∞ + (χ+ 1)χω̃2

1

(χ+ 1)2 + β2
(D.10)

In replacing Equation D.4 and D.9 in Equation D.7, the damping factor is ex-
pressed by:

η ≈
βχ(ω̃2

∞ − ω̃2
1) +

[
(χ+ 1)2 + β2

]
ω̃2

1η1

[χ+ 1 + β2] ω̃2
∞ + (χ+ 1)χω̃2

1

(D.11)

In the following the maximum of the damping ratio is investigated and the
objective function is denoted f(χ) = u(χ)

v(χ) . The maximum is attained when

f ′(χ) =
u′(χ)v(χ)− u(χ)v′(χ)

v2(χ)
= 0 (D.12)
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In replacing these notations in the expression of damping factor, we have:

f(χ) = η(χ)

v(χ) = (χ+ 1)(ω̃2
∞ + ω̃2

1) + β2ω̃2
∞

u(χ) =
[
χ+ 1 + β2

]
ω̃2
∞ + (χ+ 1)ω̃2

1

(D.13)

and
v′(χ) = ω̃2

∞ + ω̃2
1

u′(χ) = β(ω̃2
∞ − ω̃2

1) + 2(χ+ 1)ω̃2
1η1

(D.14)

By making u′(χ)v(χ)− u(χ)v′(χ) = 0, a maximal damping factor is obtained:

ηopt ≈
βχopt(ω̃

2
∞ − ω̃2

1) +
[
(χopt + 1)2 + β2

]
ω̃2

1η1

[χopt + 1 + β2] ω̃2
∞ + (χopt + 1)χoptω̃2

1

(D.15)

with

χopt =
1 + β2 +

√
µ(1 + β2)(βη1 + µα+ 1− α)

µ− 1
(D.16)

where 
µ =

β

η1

α =
ω̃2
∞
ω̃2

1

(D.17)

It’s revealed from the expression of Equation (D.15) that the optimal value of
modal damping is not substantially influenced by the applied normal force value.
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