Étude des modifications structurales induites dans le carbure de bore B4C par irradiation aux ions dans différents domaines d’énergie
Auteur / Autrice : | Guillaume Victor |
Direction : | Nathalie Moncoffre, Yves Pipon |
Type : | Thèse de doctorat |
Discipline(s) : | Physique des matériaux |
Date : | Soutenance le 09/12/2016 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale de Physique et Astrophysique de Lyon (Lyon ; 1991-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....) |
Laboratoire : Institut de Physique des 2 Infinis de Lyon | |
Jury : | Président / Présidente : David Rodney |
Examinateurs / Examinatrices : Nicolas Pradeilles | |
Rapporteur / Rapporteuse : Patrick Simon, Isabelle Monnet |
Mots clés
Résumé
Le carbure de bore B4C est envisagé en tant qu'absorbeur de neutrons dans les réacteurs nucléaires à neutrons rapides et à caloporteur sodium, RNR-Na, de génération IV. Cette filière de réacteur constitue aujourd'hui la référence pour l'avenir du nucléaire en France. Ainsi, un premier concept de réacteur RNR-Na, nommé ASTRID, devrait être construit aux alentours de 2025. L'objectif de notre étude est de comprendre, d'un point du vue fondamental, les effets induits par les irradiations aux ions, sur la structure cristallographique de B4C, dans différents domaines de pouvoirs d'arrêt. Pour cela, des échantillons de B4C, frittés par Spark Plasma Sintering (SPS) au SPCTS de Limoges, ont été irradiés par des ions de différentes natures et de différentes énergies, nous permettant de favoriser: (i) le pouvoir d'arrêt nucléaire Sn, afin d'induire un endommagement dit balistique dans le matériau, ou (ii) le pouvoir d'arrêt électronique Se, pour induire un endommagement dit électronique. Les irradiations en régime balistique ont été réalisées à l'aide d'ions C+, Ar+ et Au+ à des énergies inférieures au MeV, sur le VdG 4 MV de l'IPNL et auprès de la plateforme JANNuSOrsay. Les modifications structurales de B4C dans des gammes d'endommagement compris entre 0 et 9 dpa ont ainsi pu être étudiées. Les irradiations en régime électronique ont été effectuées par des ions S9+ et I9+ de 60 et 100 MeV sur l'accélérateur Tandem de l'IPNO. L'impact des excitations électroniques sur B4C à des pouvoirs d'arrêt électronique compris entre 4 et 15 keV.nm-1 a été déterminé. Afin d'étudier également les effets couplés de l'irradiation et de la température, toutes les irradiations ont été réalisées à température ambiante (RT), à 500°C et à 800 °C. Les caractérisations microstructurales des échantillons irradiés ont été effectuées principalement par microspectrométrie Raman au CEA Saclay et par Microscopie Electronique en Transmission (MET) in situ à JANNuS-Orsay. Nos études ont permis de mettre en évidence un seuil d'amorphisation du B4C dans les deux régimes d'endommagement à RT. En régime balistique, l'amorphisation du matériau est atteinte pour un taux de 9 dpa environ. En régime électronique, un pouvoir d'arrêt de 9 keV.nm-1 a permis de mettre en évidence une amorphisation du matériau induite par la formation de traces latentes nanométriques amorphes, et leur recouvrement à hautes fluences. De plus, nous avons également montré que la température permettait de limiter l'endommagement dès 500°C dans B4C, voire de l'inhiber presque totalement à 800°C