Thèse soutenue

Modélisation micromécanique de milieux poreux hétérogènes et applications aux roches oolithiques

FR  |  
EN
Auteur / Autrice : Fengjuan Chen
Direction : Albert GiraudDragan Grgic
Type : Thèse de doctorat
Discipline(s) : Géosciences
Date : Soutenance le 24/10/2016
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : GéoRessources (Nancy) - GeoRessources
Jury : Président / Présidente : Yves Guéguen
Examinateurs / Examinatrices : Albert Giraud, Dragan Grgic, Yves Guéguen, Volodymyr Kuschch, Igor Sevostianov
Rapporteur / Rapporteuse : Mark Kachanov, Volodymyr Kuschch

Résumé

FR  |  
EN

La problématique suivie dans ce travail est la détermination des propriétés effectives, élastiques et conductivité, de matériaux poreux hétérogènes tels que des roches, les roches oolithiques en particulier, en relation avec leur microstructure. Le cadre théorique adopté est celui de l’homogénéisation des milieux hétérogènes aléatoires et on suit les approches par tenseurs d’Eshelby. Ces approches sont basées sur la résolution des problèmes d’Eshelby : le problème de l’inclusion (premier problème) et le problème de l’inhomogénéité (second problème) isolées dans un milieu infini. La solution de ces problèmes de référence est analytique, en élasticité linéaire isotrope et en diffusion linéaire stationnaire, dans le cas d’inhomogénéités 2D ou 3D de type ellipsoïde. Elle conduit à la définition de tenseurs caractérisant les interactions entre l’inclusion/inhomogénéité et le milieu environnant. On utilise dans ce travail les tenseurs de contribution relatifs à une inhomogénéité isolée, définis par Kachanov et Sevostianov 2013, contributions à la souplesse (élasticité) et à la résistivité (conductivité). Ces tenseurs au cœur des méthodes d’homogénéisation de type EMA (Effective Medium Approximation), et en particulier les schémas NIA (Non Interaction Approximation), Mori Tanaka et Maxwell. Ce travail est centré sur la caractérisation des paramètres géométriques microstructuraux dont l’influence sur les propriétés effectives est majeure. On étudie en particulier les effets de forme des inhomogénéités, la nouveauté est l’aspect 3D. Les observations microstructurales de roches oolithiques, dont le calcaire de référence de Lavoux, mettent en évidence des hétérogénéités de forme 3D et concave. En particulier les matériaux de remplissage inter-oolithes, pores ou calcite syntaxiale. Ces formes peuvent être observées sur d’autres matériaux hétérogènes et ont été peu étudiées dans le cadre micromécanique. Cela nécessite de considérer des formes non ellipsoïdales et de résoudre numériquement les problèmes d’Eshelby. Le cœur de ce travail est consacré à la détermination des tenseurs de contribution d’inhomogénéités 3D convexes ou concaves de type supersphère (à symétrie cubique) ou supersphéroïde (à symétrie de révolution). Le premier problème d’Eshelby a été résolu, dans le cas de la supersphère, par intégration numérique de la fonction de Green exacte (solution de Kelvin dans le cas isotrope) sur la surface de l’inclusion. Des modélisations 3D aux éléments finis ont permis de résoudre le second problème d’Eshelby et d’obtenir les tenseurs de contribution à la souplesse et à la résistivité pour les superphère et supersphéroïde. Sur la base des résultats numériques, des relations analytiques simplifiées ont été proposées pour les tenseurs de contribution sous forme de fonctions des paramètres élastiques des constituants et du paramètre adimensionnel p caractérisant la concavité. Un résultat important, dans le cas de la superphère et dans le domaine concave, est l’identification d’un même paramètre géométrique pour les tenseurs de contribution à la souplesse et à la résistivité. Les résultats numériques et théoriques obtenus sont appliqués à deux problèmes : l’estimation de la conductivité thermique effective de roches calcaires oolithiques d’une part et l’étude de l’extension des relations dites de substitution définies par Kachanov et Sevostianov 2007 au cas non ellipsoïdal d’autre part. Pour le premier problème, un modèle micromécanique de type Maxwell, à deux échelles a permis de retrouver les résultats expérimentaux disponibles dans la littérature, en en particulier l’influence de la porosité sur la conductivité thermique effective dans les cas sec et humide. Dans le cas du second problème, les résultats obtenus ont permis de montrer que la validité de relations de substitution est restreinte, dans le cas non ellipsoïdal et en considérant une forme d’inhomogénéité de type supersphère, au domaine convexe seulement