Thèse soutenue

Optimisation et intégration de la mobilité partagée dans les systèmes de transport multimodaux

FR  |  
EN
Auteur / Autrice : Kamel Aissat
Direction : Ammar Oulamara
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 04/04/2016
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Sacha Varone
Examinateurs / Examinatrices : Ammar Oulamara, Marie-José Huguet, Roberto Wolfler-Calvo, Olivier Péton
Rapporteurs / Rapporteuses : Marie-José Huguet, Roberto Wolfler-Calvo

Résumé

FR  |  
EN

Le besoin de se déplacer est un besoin fondamental dans la vie de tous les jours. Avec l’extension continue des zones urbaines, l’augmentation de la population et l’amélioration du niveau de vie des citoyens, le nombre de voitures ne cesse d’augmenter. Ceci étant, la plupart des transports publics proposés aujourd’hui obéissent à des règles qui manquent de souplesse et qui incluent rarement le caractère dynamique, en temps et en espace, de la demande. Cela réduit ainsi l’attractivité de ces services et les rendant même parfois difficilement supportables. De ce fait, la majorité des usagers utilisent encore leur propre véhicule. Ce grand nombre de véhicules, qui est en augmentation continue sur les réseaux routiers, provoque de nombreux phénomènes de congestion induisant une surconsommation de carburant, des émissions inutiles de gaz à effet de serre et une perte de temps importante. Pour y remédier, nous proposons dans cette thèse de nouveaux systèmes de déplacement des usagers avec différents modèles d’optimisation pour la mobilité partagée (covoiturage et taxis-partagés) ainsi que la combinaison de la mobilité partagée avec les transports publics. Les expérimentations sont réalisées sur de vrais réseaux routiers ainsi que sur des données réelles. Ces nouveaux systèmes améliorent considérablement la qualité de service des systèmes classiques existants en termes de coût et de flexibilité tout en ayant un temps de calcul raisonnable.