Thèse soutenue

Un système interactif et itératif extraction de connaissances exploitant l'analyse formelle de concepts

FR  |  
EN
Auteur / Autrice : My Thao Tang
Direction : Yannick Toussaint
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 30/06/2016
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Jean-Marie Pierrel
Examinateurs / Examinatrices : Amedeo Napoli, Nathalie Pernelle
Rapporteurs / Rapporteuses : Henri Soldano, Anne Vilnat

Résumé

FR  |  
EN

Dans cette thèse, nous présentons notre méthodologie de la connaissance interactive et itérative pour une extraction des textes - le système KESAM: Un outil pour l'extraction des connaissances et le Management de l’Annotation Sémantique. Le KESAM est basé sur l'analyse formelle du concept pour l'extraction des connaissances à partir de ressources textuelles qui prend en charge l'interaction aux experts. Dans le système KESAM, l’extraction des connaissances et l'annotation sémantique sont unifiées en un seul processus pour bénéficier à la fois l'extraction des connaissances et l'annotation sémantique. Les annotations sémantiques sont utilisées pour formaliser la source de la connaissance dans les textes et garder la traçabilité entre le modèle de la connaissance et la source de la connaissance. Le modèle de connaissance est, en revanche, utilisé afin d’améliorer les annotations sémantiques. Le processus KESAM a été conçu pour préserver en permanence le lien entre les ressources (textes et annotations sémantiques) et le modèle de la connaissance. Le noyau du processus est l'Analyse Formelle de Concepts (AFC) qui construit le modèle de la connaissance, i.e. le treillis de concepts, et assure le lien entre le modèle et les annotations des connaissances. Afin d'obtenir le résultat du treillis aussi près que possible aux besoins des experts de ce domaine, nous introduisons un processus itératif qui permet une interaction des experts sur le treillis. Les experts sont invités à évaluer et à affiner le réseau; ils peuvent faire des changements dans le treillis jusqu'à ce qu'ils parviennent à un accord entre le modèle et leurs propres connaissances ou le besoin de l’application. Grâce au lien entre le modèle des connaissances et des annotations sémantiques, le modèle de la connaissance et les annotations sémantiques peuvent co-évoluer afin d'améliorer leur qualité par rapport aux exigences des experts du domaine. En outre, à l'aide de l’AFC de la construction des concepts avec les définitions des ensembles des objets et des ensembles d'attributs, le système KESAM est capable de prendre en compte les deux concepts atomiques et définis, à savoir les concepts qui sont définis par un ensemble des attributs. Afin de combler l'écart possible entre le modèle de représentation basé sur un treillis de concept et le modèle de représentation d'un expert du domaine, nous présentons ensuite une méthode formelle pour l'intégration des connaissances d’expert en treillis des concepts d'une manière telle que nous pouvons maintenir la structure des concepts du treillis. La connaissance d’expert est codée comme un ensemble de dépendance de l'attribut qui est aligné avec l'ensemble des implications fournies par le concept du treillis, ce qui conduit à des modifications dans le treillis d'origine. La méthode permet également aux experts de garder une trace des changements qui se produisent dans le treillis d'origine et la version finale contrainte, et d'accéder à la façon dont les concepts dans la pratique sont liés à des concepts émis automatiquement à partir des données. Nous pouvons construire les treillis contraints sans changer les données et fournir la trace des changements en utilisant des projections extensives sur treillis. À partir d'un treillis d'origine, deux projections différentes produisent deux treillis contraints différents, et, par conséquent, l'écart entre le modèle de représentation basée sur un treillis de réflexion et le modèle de représentation d'un expert du domaine est rempli avec des projections