Modélisation de contacteurs membranaires à fibres creuses : application à la capture du dioxyde de carbone en postcombustion
Auteur / Autrice : | David Ricardo Albarracin Zaidiza |
Direction : | Sabine Rode, Bouchra Belaïssaoui |
Type : | Thèse de doctorat |
Discipline(s) : | Génie des procédés et des produits |
Date : | Soutenance le 02/02/2016 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement |
Partenaire(s) de recherche : | Laboratoire : Laboratoire réactions et génie des procédés |
Jury : | Président / Présidente : Éric Favre |
Examinateurs / Examinatrices : Arnaud Baudot | |
Rapporteur / Rapporteuse : Erwan McAdam, Dorothea Catharina Nijmeijer |
Mots clés
Mots clés contrôlés
Résumé
La capture du dioxyde de carbone (CO2) en postcombustion est une stratégie importante pour la limitation de l’effet de serre. Le procédé de référence est l’absorption du CO2 dans des solutions aqueuses aminées, suivie par une étape de stripage du solvant. La technologie mature associée à ce procédé est la colonne à garnissage. Toutefois, afin de rendre le procédé plus attractif, il convient de l’intensifier en réduisant le volume des équipements et le coût énergétique associé. Les contacteurs membranaires à fibres creuses (CMFC) constituent une alternative aux colonnes à garnissage. Les CMFC permettent de développer d’importantes aires spécifiques conduisant potentiellement à une intensification des transferts gaz-liquide. Ainsi, l’utilisation des CMFC réduirait la taille des installations, mais aussi diminuerait la consommation énergétique par la diminution de la quantité de vapeur de stripage. Cependant, l’utilisation de CMFC dans les étapes d’absorption et de stripage dans des conditions industrielles a été peu étudiée. Afin de combler cette lacune, des modèles à différents niveaux de complexité : monodimensionnel, bidimensionnel, isotherme et adiabatique ont été développés, comparés et validés. Ceci afin d’identifier le niveau de complexité approprié. Les résultats de simulation ont mis en évidence le potentiel d’intensification des CMFC dans l’étape d’absorption et aussi de stripage, se traduisant par une réduction en volume de 4 à 10 fois par rapport aux colonnes à garnissage. Néanmoins, les CMFC peuvent difficilement réduire le coût énergétique du procédé étant donné que l’étape de stripage fonctionne dans des conditions très proches de la limite thermodynamique