Méthode FDTD conforme et d’ordre (2,4) pour le calcul de SER large bande de cibles complexes
Auteur / Autrice : | Nicolas Bui |
Direction : | Alain Reineix, Christophe Guiffaut |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique des hautes fréquences, photonique et systèmes |
Date : | Soutenance le 20/12/2016 |
Etablissement(s) : | Limoges |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018) |
Partenaire(s) de recherche : | Laboratoire : XLIM |
Jury : | Président / Présidente : Samir Adly |
Examinateurs / Examinatrices : Alain Reineix, Christophe Guiffaut, Philippe Pouliguen, Jean-Pierre Bérenger, Patrick Breuilh | |
Rapporteurs / Rapporteuses : Stéphane Lanteri, Raphaël Gillard |
Mots clés
Résumé
L'évaluation précise de la surface équivalente radar (SER) large bande de cibles complexes et de grande dimension est réalisée par des méthodes numériques rigoureuses. Parmi celles-ci, la méthode des différences finies dans le domaine temporel (FDTD) est bien adaptée pour effectuer ce calcul de SER sur une large bande de fréquence et obtenir une signature temporelle de la cible. Le schéma de Yee, schéma FDTD historique pour la simulation de propagation d'ondes électromagnétiques en régime transitoire, souffre de deux points faibles cruciaux: la dispersion numérique imposant une finesse de maillage; et l'approximation de la géométrie curviligne par un maillage cartésien avec des marches d'escalier détériorant la qualité des résultats. Les schémas FDTD d'ordre supérieur en espace ont été investigués pour la réduction de l'effet de la dispersion numérique. Dans cette thèse, le schéma Conservative Modified FDTD(2,4) a été développé dont les performances, en précision et en ressources, sont très intéressantes pour le calcul de SER. Liés au problème de l'approximation de la géométrie curviligne, le traitement des bords de plaques métalliques reste une difficulté non résolue pour les schémas FDTD(2,4) à stencil élargi. Les techniques conformes sont des approches développées pour le schéma de Yee, lesquelles ont été étudiées pour les schémas FDTD(2,4) afin de prendre en compte correctement la géométrie curviligne. Nous proposons une nouvelle approche reposant sur le modèle des fils obliques pour la modélisation des éléments surfaciques métalliques. Des applications SER de cibles montrent que celle-ci est prometteuse.