Simulation exacte de diffusions browniennes (biaisées) avec dérive discontinue
Auteur / Autrice : | Sara Mazzonetto |
Direction : | David Dereudre, Sylvie Rœlly |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 08/11/2016 |
Etablissement(s) : | Lille 1 en cotutelle avec Universität Potsdam |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Lille) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Paul Painlevé |
Résumé
Cette thèse de doctorat consiste en l’étude et en la simulation exacte de deux classes de diffusions browniennes à valeurs réelles: le mouvement brownien biaisé en plusieurs points et les diffusions browniennes avec dérive admettant un nombre fini de sauts. On appelle diffusion biaisée en plusieurs points une diffusion (Markovienne) évoluant entre plusieurs barrières semi-perméables. Lorsqu’une telle diffusion atteint l’une de ces barrières, elle est partiellement réfléchie, avec une probabilité dépendant de la barrière. Nous obtenons tout d’abord une représentation du semi-groupe de transition du mouvement brownien biaisé avec dérive constante sous la forme d’une intégrale de contour, grâce à l’étude fine des propriétés complexes de ce semi-groupe. Cette représentation nous fournit alors une formule explicite et novatrice pour la densité de transition du mouvement brownien avec dérive constante biaisé en deux points. L’expression consiste en une série de fonctions gaussiennes et spéciales. Nous proposons une nouvelle méthode de simulation par rejet qui offre la possibilité d’échantillonner de façon exacte à partir d’une densité, même si elle n’est connue que par approximation, sans aucune autre erreur que celles de l’ordinateur. Nous appliquons ensuite ce nouveau schéma à la simulation d’un mouvement brownien avec dérive constante, biaisé en deux points. Chemin faisant, nous obtenons une borne uniforme pour le quotient de cette densité par rapport à la densité du mouvement Brownien avec la même dérive. Un autre objectif de la thèse est de développer un algorithme de simulation exacte pour les diffusions browniennes avec dérive admettant plusieurs sauts.