Thèse soutenue

Minimisation de la consommation d'énergie pour des taches temps-réels parallèles sur des architectures multicoeurs hétérogènes

FR  |  
EN
Auteur / Autrice : Houssam-Eddine Zahaf
Direction : Richard OlejnikAbou el hassan Benyamina
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 02/11/2016
Etablissement(s) : Lille 1 en cotutelle avec Université d'Oran
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Centre de Recherche en Informatique, Signal et Automatique de Lille

Résumé

FR  |  
EN

Les systèmes cyber-physiques (CPS) et d’Internet des objets génèrent un volume et une variété des données sans précédant. Le temps que ces données parcourent le réseau dans son chemin vers le cloud, la possibilité de réagir à un événement critique pourrait être tardive. Pour résoudre ce problème, les traitements de données nécessitant une réponse rapide sont faits à proximité d’où les données sont collectées. Ainsi, seuls les résultats du pré-traitement sont envoyées au cloud et la réaction pourrai être déclenché suffisamment rapide pour préserver l’intégrité du système. Ce modèle de calcul est connu comme Fog Computing. Un large spectre d’applications de CPS ont des contraintes temporelle et peuvent être facilement parallélisées en distribuant les calculs sur différents sous-ensembles de données en même temps. Ceci peut permettre d’obtenir un temps de réponse plus court et un temps de creux plus large. Ainsi, on peut réduire la fréquence du processeur et/ou éteindre des parties du processeur afin de réduire la consommation d’énergie. Dans cette thèse, nous nous concentrons sur le problème d'ordonnancement d’un ensemble de taches temps-réels parallèles sur des architectures multi-coeurs dans l’objectif de réduire la consommation d’énergie en respectant toutes les contraintes temporelles. Nous proposons ainsi plusieurs modèles de tâches et des testes d'ordonnançabilité pour résoudre le problème d’allocation des threads aux processeurs. Nous proposons aussi des méthodes qui permettent de sélectionner les fréquences et les états des processeurs. Les modèles proposés peuvent être implantés comme des directives dans la même logique que OpenMP.