Thèse soutenue

Modeles temporels et hierarchiques pour la planification et l'action en robotique

FR  |  
EN
Auteur / Autrice : Arthur Bit-Monnot
Direction : Malik GhallabFélix Ingrand
Type : Thèse de doctorat
Discipline(s) : Robotique et Informatique
Date : Soutenance le 02/12/2016
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)
Jury : Président / Présidente : Rachid Alami
Examinateurs / Examinatrices : Malik Ghallab, Félix Ingrand, Joachim Hertzberg, Federico Pecora, Amedeo Cesta, David. E. Smith, Cédric Pralet
Rapporteurs / Rapporteuses : Joachim Hertzberg, Federico Pecora

Résumé

FR  |  
EN

Le domaine de la planification de tâches a vu de rapides développements au cours de la dernière décennie et des planificateurs sont maintenant capable de trouver des plans de centaines actions en quelques secondes. Malgré ces importants progrès, les systèmes robotiques dépendent toujours d'une architecture réactive avec peu de capacités de délibération sur les futures actions qu'il pourraient faire. Dans cette thèse, nous soutenons qu'une intégration réussie d'un planificateur avec un système robotique ne peut être réussie que si le planificateur a la capacité de raisonner sur des modèles temporels et hiérarchiques. Le temps est en en effet une ressource centrale pour énormément d'activité autonomes tandis que les aspects hiérarchiques sont critiques pour l'intégration de modules de délibération à différents niveau d'abstraction, dans lequel on reçoit une vue très abstraite d'une activité qui doit être affinée jusqu'à des commandes motrices. Comme première étape dans cette direction, nous commençons par présenter un modèle pour la planification temporelle qui unifie les approches génératives et hiérarchiques. Au centre de ce modèle sont des patrons d'actions temporelles, complétées par une spécification d'un état initial et de l'évolution attendue de l'environnement. De plus, notre modèle permet la spécification de connaissance hiérarchique sur tout ou partie du domaine. Ainsi, notre modèle généralise les approches génératives et HTN tout en supportant une représentation explicite du temps. Ensuite, nous introduisons un algorithme de planification adapté au modèle proposé. Pour supporter les caractéristiques hiérarchiques, nous étendons l'approche classique de planification en l'espace des plan, notamment utilisée dans les planificateurs basés sur les CSP, avec les notions de tâches et de décomposition. L'approche est implémentée dans FAPE (Flexible Acting and Planning Environment) conjointement avec des techniques pour l'analyse automatique de problèmes. Celles-ci sont utilisées au cours de la planification pour guider la recherche d'une solution. Nous montrons que FAPE a des performances comparables avec les meilleurs planificateurs actuels quand utilisé dans une optique de planification générative. L'ajout d'information hiérarchique permet de les surpasser en augmentant encore les performances. Nous étudions ensuite les méthodes habituellement utilisées pour raisonner sur l'incertitude temporelle en planification. Nous relâchons les suppositions classiques d'observabilité totale et proposons des techniques pour raisonner sur les observations nécessaires pour maintenir un plan exécutable. Nous montrons que les dites observations peuvent être détectées durant la planification et traitées incrémentalement en considérant les actions de perceptions appropriées. Pour finir, nous discutons de la place du système de planification proposé comme composant central pour le contrôle d'un robot. Nous démontrons que la prise en compte explicite du temps facilite le monitoring et l'exécution d'actions quand le système doit prendre en compte des événements contingents qui nécessitent d'être observés. Nous bénéficions également des représentations hiérarchiques et par contraintes qui facilitent la réparation de plan et la possibilité d'affiner un plan durant l'exécution.