Statistical lifetime modeling of FeNiCr alloys for high temperature corrosion in waste to energy plants and metal dusting in syngas production plants - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2016

Statistical lifetime modeling of FeNiCr alloys for high temperature corrosion in waste to energy plants and metal dusting in syngas production plants

Modélisation statistique de la durée de vie des alliages Fe-Ni-Cr soumis à la corrosion à haute température en environnement UVEOM et metal dusting en installations Syngas

Résumé

Over the last decades, the corrosion control of alloys exposed to severe and complex conditions in industrial applications has been a great challenge. Currently, corrosion costs are increasing and preventive strategies have become an important industrial demand. The SCAPAC project funded by the French National Research Agency has proposed to study the corrosion for two separate processes: Steam Methane Reforming (SMR) and Waste to Energy (WtE). Although the operating conditions of both processes are different, the modeling approaches can be similar. Metallic components in the SMR process are subjected to metal dusting corrosion, which is a catastrophic form of damage that affects alloys exposed to highly carburising gases (aC>1) at high temperatures (400–800 °C).[1]. Likewise, metallic components in the Waste to Energy (WtE) process are subjected to high temperature corrosion under deposit that takes place in equipment exposed to atmospheres with high content of corrosive products of combustion. Metal dusting corrosion is considered as a critical phenomenon that has led to worldwide material loss for 50 years. A basic understanding of the degradation mechanisms is available. However, the effect of some process parameters is still not well understood in current literature and requires further study. Otherwise for high temperature corrosion, a considerable amount of literature has been published over the last few decades and the mechanisms are well documented. Also many materials and coatings have been developed. However, the material performance in different environments has not been sufficiently well understood to define suitable criteria for lifetime prediction models regarding operating conditions, due to the high complexity of the corrosion phenomena involved. Literature research in both fields revealed modeling approaches in different kinds of complex conditions and applications. Nevertheless, there are no lifetime models currently available in the open literature for commercial materials that consider a wide range of conditions and the relative weight of the variables involved in the corrosion processes. This dissertation presents a methodology to develop lifetime prediction models to evaluate materials performance under metal dusting and high-temperature corrosion conditions. Two databases were created to integrate experimental results from the SCAPAC project, as well as results from literature to enable sufficient amount of data for modeling. The databases allowed analyzing approximately 4000 corrosion rates by different statistical methods over different scenarios. The Principal Component Analysis (PCA) methodology was performed to identify the key parameters to create lifetime prediction models using Multiple Linear Regressions (MLR). For high-temperature corrosion, three models were obtained in the thermal gradient scenario for three families of alloys: low alloyed steels, Fe/Ni-based high temperature alloys and Ni-based alloys, showing agreeable results. For metal dusting corrosion, two models were obtained to explain the incubation times and the kinetic of pit depth growing, showing satisfactory results. The statistical models in both cases were compared with experimental and theoretical results showing good agreement with experimental findings, which allows performing the lifetime assessment of materials under defined conditions.
Au cours des dernières décennies, le contrôle de la corrosion des alliages exposés à des conditions sévères et complexes a été un grand défi pour les applications industrielles. Les coûts de la corrosion sont élevés et les stratégies de prévention sont devenues une demande industrielle importante. Le projet SCAPAC financé par l’ANR, a proposé d’étudier la corrosion lors de deux procédés industriels: le vapo-réformage du méthane et l’incinération des déchets ménagers. Bien que les conditions de fonctionnement de ces deux procédés soient différentes, les approches de modélisation peuvent être similaires. Dans le procédé de vapo-réformage du méthane, les composants métalliques sont soumis à la corrosion par « metal dusting », qui est une forme d’endommagement catastrophique qui affecte les alliages exposés à des températures élevées (400-800 °C) et des atmosphères sursaturées en carbone. De même, les composants métalliques des incinérateurs de déchets qui sont exposés à des atmosphères de combustion sont soumis à la corrosion à haute température sous dépôts de cendres. Le « metal dusting » est un phénomène critique qui a mené à des pertes matérielles importantes et à l’arrêt d’installations industrielles pendant les 50 dernières années. Les mécanismes de cette dégradation ont été identifiés et sont disponibles dans la littérature. Cependant, l'effet de certains paramètres des procédés ne sont pas encore bien compris et nécessitent des compléments d'études. En ce qui concerne la corrosion à haute température, les mécanismes sont bien documentés et une quantité considérable de travaux ont été publiés au cours des dernières décennies. De nombreux matériaux et revêtements ont été développés. Cependant, la performance des matériaux dans des environnements différents n'est pas assez bien comprise pour créer des modèles de prédiction de durée de vie. Une revue bibliographique de ces deux domaines a révélé qu’il existait des approches de modélisation. Néanmoins, il n'y a pas actuellement de modèle prédictifs fiables de durée de vie qui soit disponible dans la littérature pour les alliages commerciaux, et pour une gamme étendue de conditions expérimentales. La présente étude présente une méthodologie pour développer des modèles statistiques de prévision de durée de vie. Il s’agit d’évaluer la performance de matériaux soumis au « metal dusting » et à la corrosion à haute température sous dépôt. Deux bases de données ont été construites pour intégrer les résultats expérimentaux du projet SCAPAC, aussi bien que résultats de la littérature. Ceci afin d’avoir suffisant des données pour la modélisation. Ces bases de données ont permis d'analyser plus de 4000 vitesses de corrosion à l’aide de méthodes statistiques appliquées à différents scénarios. La méthodologie de l’Analyse des Composantes Principales (ACP) a été utilisée pour identifier les paramètres clés des mécanismes de corrosion, qui ont été ensuite utilisés pour construire des modèles de prédiction de durée de vie par Régression Linéaire Multiple (RLM). Pour la corrosion à haute température, trois modèles ont été obtenus dans le scénario de gradient thermique pour trois familles d'alliages: des aciers ferritiques, des alliages austénitiques à base de fer et nickel et des alliages à base de nickel, en montrant des résultats encourageants. Pour la corrosion par « metal dusting », deux modèles ont été obtenus pour expliquer le temps d'incubation et la cinétique croissance de profondeur de piqures, avec des résultats satisfaisants. Les modèles statistiques dans les deux cas ont été comparés avec deux résultats expérimentaux et théoriques montrant un bon accord, qui permet l'évaluation de la durée de vie des matériaux dans les conditions définies.
Fichier principal
Vignette du fichier
Camperos_Guevara.pdf (10.79 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04236703 , version 1 (11-10-2023)

Identifiants

  • HAL Id : tel-04236703 , version 1

Citer

Sheyla Herminia Camperos Guevara. Statistical lifetime modeling of FeNiCr alloys for high temperature corrosion in waste to energy plants and metal dusting in syngas production plants. Materials. Institut National Polytechnique de Toulouse - INPT, 2016. English. ⟨NNT : 2016INPT0013⟩. ⟨tel-04236703⟩
29 Consultations
8 Téléchargements

Partager

Gmail Facebook X LinkedIn More