Thèse soutenue

Nanostructures de silicium par croissance chimique catalysée : une plate-forme pour des applications micro-supercondensateurs
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Dorian Gaboriau
Direction : Saïd Sadki
Type : Thèse de doctorat
Discipline(s) : Chimie Physique Moléculaire et Structurale
Date : Soutenance le 30/11/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut nanosciences et cryogénie (Grenoble ; 2008-2018)
Jury : Président / Présidente : Jean-Claude Leprêtre
Examinateurs / Examinatrices : Pascal Gentile, Jean Le Bideau, Eric Lafontaine, Vincent Baudinaud
Rapporteurs / Rapporteuses : Pierre Audebert, Patrice Simon

Résumé

FR  |  
EN

Les supercondensateurs sont des dispositifs de stockage électrochimique de l’énergie ayant été récemment mis au point et possédant des performances intermédiaires entre les condensateurs diélectriques et les batteries. Leurs intéressantes valeurs de densité d’énergie et de puissance, conjuguées à leur excellente durée de vie et à leur miniaturisation facilité rendent ces composants prometteurs pour des micro-dispositifs électroniques, tels des micro-capteurs autonomes ou des implants médicaux.Le silicium nanostructuré par CVD a prouvé être un remarquable matériau d’électrode de supercondensateur, pour des applications miniaturisées, lors de récents travaux. L’excellent contrôle de la morphologie et des propriétés électroniques permis par la synthèse montante de nano-fils et nano-arbres de silicium, ainsi que la grande stabilité électrochimique et thermique de ce matériau font des nanostructures de silicium obtenues par synthèse montante une excellente plate-forme pour des micro-supercondensateurs.La présente thèse s’attache à explorer plusieurs voies d’amélioration et d’utilisation des nano-fils et nano-arbres de silicium. Une étude systématique de l’optimisation des nanostructures a été conduite, permettant d’améliorer largement les performances précédemment établies. Ensuite, une fonctionnalisation par des couches minces d’alumines utilisant la technique d’ALD a permis d’accroitre largement la plage de tensions d’utilisation des supercondensateurs, et d’augmenter leur stabilité électrochimique. Enfin, la croissance « sur-puce », ainsi que l’étude de la stabilité en température des dispositifs ont été effectuées, laissant entrevoir d’importantes perspectives d’applications.