Thèse soutenue

Vésicules lipidiques biomimétiques décorées par un assemblage multicouche nanocristaux de cellulose/xyloglucane : élaboration et caractérisation mécanique

FR  |  
EN
Auteur / Autrice : Harisoa Radavidson
Direction : Laurent Heux
Type : Thèse de doctorat
Discipline(s) : Sciences des Polymères
Date : Soutenance le 15/12/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Centre de recherches sur les macromolécules végétales (Grenoble ; 1966-....)
Jury : Président / Présidente : Elisabeth Charlaix
Examinateurs / Examinatrices : Emmanuel Belamie, Thomas Podgorski
Rapporteurs / Rapporteuses : Laurence Navailles, Cécile Monteux

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Contrairement à leurs homologues animales, les cellules végétales sont entourées d’une fine enveloppe de polysaccharides appelée paroi primaire, dont la principale structure portante est un réseau de microfibrilles de cellulose reliées entre elles par des hémicelluloses. L’objectif de ce travail est de mettre au point des capsules biomimétiques de la paroi végétale qui puissent servir de système modèle dans l’étude des propriétés mécaniques de ce matériau naturel. Pour ce faire, des vésicules géantes unilamellaires d’un diamètre moyen de 20 µm ont été utilisées comme support de dépôts couche-par-couche de nanocristaux de cellulose (les sous-éléments des microfibrilles) et de xyloglucane (l’hémicellulose la plus répandue) jusqu’à une dizaine de bicouches, les capsules ainsi obtenues ayant été caractérisées par microscopie confocale. Leur comportement en déformation en réponse à une pression osmotique a pu être observé : leur dégonflement a donné lieu à l’apparition de diverses morphologies dont certaines sont similaires aux formes de coques minces de matériau isotrope dégonflées, tandis que leur comportement en gonflement est comparable à la réponse d’un matériau viscoélastique. Enfin, des expériences de nano-indentation par microscopie à force atomique ont été effectuées pour mesurer la rigidité de la paroi des capsules. Leur module d’Young a pu être déduit des courbes de force-déformation et s’avère être compris entre 6 et 18 MPa, ce qui est du même ordre de grandeur que les valeurs obtenues par des mesures similaires effectuées sur des parois végétales naturelles.