Thèse soutenue

Caractérisation et modélisation de nouvelles capacités «Through Silicon Capacitors» à forte intégration pour la réduction de consommation et la montée en fréquence dans les architectures 3D de circuits intégrés

FR  |  
EN
Auteur / Autrice : Khadim Dieng
Direction : Bernard Flechet
Type : Thèse de doctorat
Discipline(s) : Nano electronique et nano technologies
Date : Soutenance le 23/11/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut de microélectronique, électromagnétisme et photonique - Laboratoire d'hyperfréquences et de caractérisation (Grenoble)
Jury : Président / Présidente : Bruno Sauviac
Examinateurs / Examinatrices : Cédric Bermond, Sylvain Joblot
Rapporteurs / Rapporteuses : Francis Calmon, Thierry Le Gouguec

Résumé

FR  |  
EN

La diminution de la longueur de grille des transistors a été le moteur essentiel de l’évolution des circuits intégrés microélectroniques ces dernières décennies. Toutefois, cette évolution des circuits microélectroniques a entrainé une densification des lignes d’interconnexion, donc la génération de fortes pertes, des ralentissements et de la diaphonie sur les signaux transmis, ainsi qu’une augmentation de l’impédance parasite des interconnexions. Cette dernière est néfaste pour l’intégrité de l’alimentation des composants actifs présents dans le circuit. Son augmentation multiplie le risque d’apparition d’erreurs numériques conduisant au dysfonctionnement d’un système. Il est donc nécessaire de réduire l’impédance sur le réseau d’alimentation des circuits intégrés. Pour ce faire, les condensateurs de découplage sont utilisés et placés hiérarchiquement à différents étages des circuits et dans leur intégralité (PCB, package, interposeur, puce).Ces travaux de doctorat s’inscrivent dans le cadre des développements récents des nouvelles solutions d’intégration 3D en microélectronique et ils portent sur l’étude de nouvelles architectures de capacités 3D, très intégrées et à fortes valeurs (>1 nF), élaborées en profondeur dans l’interposeur silicium. Ces composants, inspirés des architectures de via traversant le silicium (TSV, Through Silicon Via), sont nommées Through Silicon Capacitors (TSC). Ils constituent un élément clef pour l’amélioration des performances des alimentations des circuits intégrés car elles pourront réduire efficacement la consommation des circuits grâce à cette intégration directe de composants passifs dans l’interposeur silicium qui sert d’étage d’accueil des puces. Ces composants tridimensionnels permettent en effet d’atteindre de grandes densités de capacité de 35 nF/mm². Les enjeux sont stratégiques pour des applications embarquées et à haut débit et plus généralement dans un environnement économique et sociétal conscient de nos limites énergétiques. De plus ces condensateurs de découplage doivent fonctionner à des fréquences atteignant 2 GHz, voire 4 GHz, qui tendent à maximiser les effets parasites préjudiciables aux performances énergétiques des alimentations. Ceci est rendu possible par l’optimisation de leur intégration et l’utilisation de couches de cuivre avec, une bonne conductivité supérieure à 45 MS/m, comme électrodes.Les technologies d’élaboration des condensateurs TSC ont été développées au sein du CEA-LETI et de STMicroelectronics. Leur comportement électrique restait jusqu’alors mal connu et leurs performances difficiles à quantifier. Les études menées dans cette thèse consistaient à modéliser ces nouveaux composants en prenant en compte les paramètres matériaux et géométriques afin de connaitre les effets parasites. Les modèles électriques établis ont été confrontés à des caractérisations électriques effectuées sur une large bande de fréquence (du DC à 40 GHz). Ainsi ce travail a permis d’optimiser une architecture de capacité et leur intégration dans un réseau d’alimentation d’un circuit intégré 3D a pu montrer leur efficacité pour des opérations de découplage.