Thèse soutenue

Fouille de données tensorielles environnementales

FR  |  
EN
Auteur / Autrice : Jérémy E. Cohen
Direction : Pierre Comon
Type : Thèse de doctorat
Discipline(s) : Signal, image, paroles, télécoms
Date : Soutenance le 05/09/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Grenoble Images parole signal automatique (2007-....)
Jury : Président / Présidente : David Brie
Rapporteurs / Rapporteuses : Lieven De Lathauwer, Laurent Albera, Nikos D. Sidiropoulos

Résumé

FR  |  
EN

Parmi les techniques usuelles de fouille de données, peu sont celles capables de tirer avantage de la complémentarité des dimensions pour des données sous forme de tableaux à plusieurs dimensions. A l'inverse les techniques de décomposition tensorielle recherchent spécifiquement les processus sous-jacents aux données, qui permettent d'expliquer les données dans toutes les dimensions. Les travaux rapportés dans ce manuscrit traitent de l'amélioration de l'interprétation des résultats de la décomposition tensorielle canonique polyadique par l'ajout de connaissances externes au modèle de décomposition, qui est par définition un modèle aveugle n'utilisant pas la connaissance du problème physique sous-jacent aux données. Les deux premiers chapitres de ce manuscrit présentent respectivement les aspects mathématiques et appliqués des méthodes de décomposition tensorielle. Dans le troisième chapitre, les multiples facettes des décompositions sous contraintes sont explorées à travers un formalisme unifié. Les thématiques abordées comprennent les algorithmes de décomposition, la compression de tenseurs et la décomposition tensorielle basée sur les dictionnaires. Le quatrième et dernier chapitre présente le problème de la modélisation d'une variabilité intra-sujet et inter-sujet au sein d'un modèle de décomposition contraint. L'état de l'art en la matière est tout d'abord présenté comme un cas particulier d'un modèle flexible de couplage de décomposition développé par la suite. Le chapitre se termine par une discussion sur la réduction de dimension et quelques problèmes ouverts dans le contexte de modélisation de variabilité sujet.